Moderate deviations and large deviations for kernel density estimators

被引:48
|
作者
Gao, FQ [1 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
关键词
kernel density estimator; moderate deviations; large deviations;
D O I
10.1023/A:1023574711733
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let f(n) be the non-parametric kernel density estimator based on a kernel function K and a sequence of independent and identically distributed random variables taking values in R-d. It is proved that if the kernel function is an integrable function with bounded variation, and the common density function f of the random variables is continuous and f(x) --> as \x\ --> infinity , then the moderate deviation principle and large deviation principle for {supx is an element of R-d \f(n)(x)-E( f(n)(x))\, n greater than or equal to 1} hold.
引用
收藏
页码:401 / 418
页数:18
相关论文
共 50 条