Moderate Deviations and Large Deviations for Kernel Density Estimators

被引:0
|
作者
Fuqing Gao
机构
[1] Wuhan University,School of Mathematics and Statistics
来源
关键词
kernel density estimator; moderate deviations; large deviations;
D O I
暂无
中图分类号
学科分类号
摘要
Let fn be the non-parametric kernel density estimator based on a kernel function K and a sequence of independent and identically distributed random variables taking values in ℝd. It is proved that if the kernel function is an integrable function with bounded variation, and the common density function f of the random variables is continuous and f(x) → 0 as |x| → ∞, then the moderate deviation principle and large deviation principle for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\{ \sup _{x \in \mathbb{R}^d } |f_n (x) - E(f_n (x))|,n \geqslant 1\} $$ \end{document} hold.
引用
收藏
页码:401 / 418
页数:17
相关论文
共 50 条