Large and moderate deviations principles for kernel estimators of the multivariate regression

被引:8
|
作者
Mokkadem A. [1 ]
Pelletier M. [1 ]
Thiam B. [1 ]
机构
[1] Dépt. de Mathématiques, Univ. de Versailles-Saint-Quentin, Versailles
关键词
large deviations principle; moderate deviations principle; Nadaraya-Watson estimator; recursive kernel estimator;
D O I
10.3103/S1066530708020051
中图分类号
学科分类号
摘要
In this paper, we prove large deviations principle for the Nadaraya-Watson estimator and for the semi-recursive kernel estimator of the regression in the multidimensional case. Under suitable conditions, we show that the rate function is a good rate function. We thus generalize the results already obtained in the one-dimensional case for the Nadaraya-Watson estimator. Moreover, we give a moderate deviations principle for these two estimators. It turns out that the rate function obtained in the moderate deviations principle for the semi-recursive estimator is larger than the one obtained for the Nadaraya-Watson estimator. © 2008 Allerton Press Inc.
引用
收藏
页码:146 / 172
页数:26
相关论文
共 50 条