Parameter estimation for building energy models using GRcGAN

被引:4
|
作者
Shin, Hansol [1 ]
Park, Cheol-Soo [1 ,2 ]
机构
[1] Seoul Natl Univ, Coll Engn, Dept Architecture & Architectural Engn, Seoul 08826, South Korea
[2] Seoul Natl Univ, Inst Construct & Environm Engn, Inst Engn Res, Coll Engn, Seoul 08826, South Korea
关键词
generative adversarial networks; generative model; parameter estimation; inverse problem; model calibration; parameter uncertainty; BAYESIAN CALIBRATION; UNCERTAINTY; SIMULATION; OPTIMIZATION; PERFORMANCE; PREDICTION;
D O I
10.1007/s12273-022-0965-1
中图分类号
O414.1 [热力学];
学科分类号
摘要
Parameter estimation methods can be classified into (1) manual (trial-and-error), (2) numerical optimization (optimization, sampling), (3) Bayesian inference (Bayes filter, Bayesian calibration), and (4) machine learning (generative model). Bayesian calibration has been widely used because it can capture stochastic nature of uncertain parameters. However, the results of Bayesian calibration could be biased by (1) the prior distribution assumed by the expert's subjective judgment; (2) the likelihood function that cannot always describe the true likelihood; and (3) the posterior distribution approximation method, such as the Markov Chain Monte Carlo, which requires significant computation time. To overcome this, a new approach using a generator-regularized continuous conditional generative adversarial network (GRcGAN) is presented in this paper. Five target parameters of the DOE reference building model were selected. GRcGAN was trained to estimate uncertain parameters using simulated monthly electricity and gas use. GRcGAN can successfully estimate five uncertain parameters based on 1,000 training data points. The proposed approach presents a potential for stochastic parameter estimation.
引用
收藏
页码:629 / 639
页数:11
相关论文
共 50 条
  • [1] Parameter estimation for building energy models using GRcGAN
    Hansol Shin
    Cheol-Soo Park
    Building Simulation, 2023, 16 : 629 - 639
  • [2] Automated model generation and parameter estimation of building energy models using an ontology-based framework
    Bjornskov, Jakob
    Jradi, Muhyiddine
    Wetter, Michael
    ENERGY AND BUILDINGS, 2025, 329
  • [3] Calibration of simplified building energy models for parameter estimation and forecasting: Stochastic versus deterministic modelling
    Rouchier, Simon
    Rabouille, Mickael
    Oberle, Pierre
    BUILDING AND ENVIRONMENT, 2018, 134 : 181 - 190
  • [4] Parameter estimation for energy balance models with memory
    Roques, Lionel
    Chekroun, Mickael D.
    Cristofol, Michel
    Soubeyrand, Samuel
    Ghil, Michael
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2014, 470 (2169):
  • [5] Parameter estimation of internal thermal mass of building dynamic models using genetic algorithm
    Wang, SW
    Xu, XH
    ENERGY CONVERSION AND MANAGEMENT, 2006, 47 (13-14) : 1927 - 1941
  • [6] Parameter identifiability in Bayesian inference for building energy models
    Yi, Dong Hyuk
    Kim, Deuk Woo
    Park, Cheol Soo
    ENERGY AND BUILDINGS, 2019, 198 : 318 - 328
  • [7] GAN-based parameter estimation of building energy model
    Shin, Hansol
    Park, Cheol-Soo
    ASHRAE TRANSACTIONS 2022, VOL 128, PT 2, 2022, 128 : 397 - 404
  • [8] Joint parameter estimation for dark energy models with the CMB
    Gold, BM
    Albrecht, A
    Observing Dark Energy, Proceedings, 2005, 339 : 235 - 238
  • [9] On parameter estimation using nonparametric noise models
    Mahata, Kaushik
    Pintelon, Rik
    Schoukens, Johan
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2006, 51 (10) : 1602 - 1612
  • [10] A simultaneous calibration and parameter ranking method for building energy models
    Yuan, Jun
    Nian, Victor
    Su, Bin
    Meng, Qun
    APPLIED ENERGY, 2017, 206 : 657 - 666