Parameters Identification and Numerical Simulation for a Fractional Model of Honeybee Population Dynamics

被引:4
|
作者
Georgiev, Slavi [1 ,2 ]
Vulkov, Lubin [2 ]
机构
[1] Bulgarian Acad Sci, Inst Math & Informat, Dept Informat Modeling, Sofia 1113, Bulgaria
[2] Univ Ruse, Fac Nat Sci & Educ, Dept Appl Math & Stat, Ruse 7004, Bulgaria
关键词
honeybee population dynamics; fractional derivative; parameter estimation; cost function minimization; CALCULUS; PART;
D O I
10.3390/fractalfract7040311
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In order to investigate the honeybee population dynamics, many differential equation models were proposed. Fractional derivatives incorporate the history of the honeybee population dynamics. We numerically study the inverse problem of parameter identification in models with Caputo and Caputo-Fabrizio differential operators. We use a gradient method of minimizing a quadratic cost functional. We analyze and compare results for the integer (classic) and fractional models. The present work also contains discussion on the efficiency of the numerical methods used. Computational tests with realistic data were performed and are discussed.
引用
下载
收藏
页数:18
相关论文
共 50 条
  • [21] ANALYSIS AND NUMERICAL SIMULATION OF FRACTIONAL BIOLOGICAL POPULATION MODEL WITH SINGULAR AND NON-SINGULAR KERNELS
    Prakash, Amit
    Rahul
    PROCEEDINGS OF THE INSTITUTE OF MATHEMATICS AND MECHANICS, 2022, 48 : 178 - 193
  • [22] Identification of basketball parameters for a simulation model
    Okubo, Hiroki
    Hubbard, Mont
    ENGINEERING OF SPORT 8: ENGINEERING EMOTION - 8TH CONFERENCE OF THE INTERNATIONAL SPORTS ENGINEERING ASSOCIATION (ISEA), 2010, 2 (02): : 3281 - 3286
  • [23] Numerical Simulation of Space Fractional Order Schnakenberg Model
    班亭亭
    王玉兰
    Journal of Donghua University(English Edition), 2021, 38 (02) : 181 - 186
  • [24] Numerical Simulation and Identification of Fractional Systems using Digital Adjustable Fractional Order Integrator
    Djouambi, A.
    Charef, A.
    Voda, A.
    2013 EUROPEAN CONTROL CONFERENCE (ECC), 2013, : 2615 - 2620
  • [25] Joints Parameters Identification in Numerical Modeling of Structural Dynamics
    Yang, Yuedong
    Chen, Jiqing
    Lan, Fengchong
    Xiong, Fei
    Zeng, Zicong
    SHOCK AND VIBRATION, 2018, 2018
  • [26] Numerical identification of parameters for a model of sedimentation processes
    Coronel, A
    James, F
    Sepúlveda, M
    INVERSE PROBLEMS, 2003, 19 (04) : 951 - 972
  • [27] Approximate solutions of fuzzy fractional population dynamics model
    Moa’ath N. Oqielat
    Tareq Eriqat
    Osama Ogilat
    Zaid Odibat
    Zeyad Al-Zhour
    Ishak Hashim
    The European Physical Journal Plus, 137
  • [28] Approximate solutions of fuzzy fractional population dynamics model
    Oqielat, Moa'ath N.
    Eriqat, Tareq
    Ogilat, Osama
    Odibat, Zaid
    Al-Zhour, Zeyad
    Hashim, Ishak
    EUROPEAN PHYSICAL JOURNAL PLUS, 2022, 137 (08):
  • [29] THE PERIODIC PATCH MODEL FOR POPULATION DYNAMICS WITH FRACTIONAL DIFFUSION
    Berestycki, Henri
    Roquejoffre, Jean-Michel
    Rossi, Luca
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2011, 4 (01): : 1 - 13
  • [30] NUMERICAL-SIMULATION OF DYNAMICS IN THE XY MODEL
    LOFT, R
    DEGRAND, TA
    PHYSICAL REVIEW B, 1987, 35 (16): : 8528 - 8541