Parameters Identification and Numerical Simulation for a Fractional Model of Honeybee Population Dynamics

被引:4
|
作者
Georgiev, Slavi [1 ,2 ]
Vulkov, Lubin [2 ]
机构
[1] Bulgarian Acad Sci, Inst Math & Informat, Dept Informat Modeling, Sofia 1113, Bulgaria
[2] Univ Ruse, Fac Nat Sci & Educ, Dept Appl Math & Stat, Ruse 7004, Bulgaria
关键词
honeybee population dynamics; fractional derivative; parameter estimation; cost function minimization; CALCULUS; PART;
D O I
10.3390/fractalfract7040311
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In order to investigate the honeybee population dynamics, many differential equation models were proposed. Fractional derivatives incorporate the history of the honeybee population dynamics. We numerically study the inverse problem of parameter identification in models with Caputo and Caputo-Fabrizio differential operators. We use a gradient method of minimizing a quadratic cost functional. We analyze and compare results for the integer (classic) and fractional models. The present work also contains discussion on the efficiency of the numerical methods used. Computational tests with realistic data were performed and are discussed.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] A model for the simulation of macroalgal population dynamics and productivity
    Duarte, P
    Ferreira, JG
    ECOLOGICAL MODELLING, 1997, 98 (2-3) : 199 - 214
  • [42] Novel Time Method of Identification of Fractional Model Parameters of Supercapacitor
    Lewandowski, Miroslaw
    Orzylowski, Marek
    ENERGIES, 2020, 13 (11)
  • [43] Parameter identification in multistage population dynamics model
    Picart, Delphine
    Ainseba, Bedr'eddine
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (06) : 3315 - 3328
  • [44] Fractional numerical dynamics for the logistic population growth model under Conformable Caputo: a case study with real observations
    Qureshi, Sania
    Yusuf, Abdullahi
    Aziz, Shaheen
    PHYSICA SCRIPTA, 2021, 96 (11)
  • [45] On the numerical simulation of uncertain parameters in a radionuclide transport model
    Moreno, Jose Manuel Diaz
    Lazaar, Saiida
    Gallego, Francisco Ortegon
    COMPTES RENDUS MATHEMATIQUE, 2007, 345 (07) : 415 - 420
  • [46] A fractional order epidemic model and simulation for avian influenza dynamics
    Ye, Xingyang
    Xu, Chuanju
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (14) : 4765 - 4779
  • [47] Trapezoidal Rule for Numerical Evaluation of Fractional Order Integrals with Applications to Simulation and Identification of Fractional Order Systems
    Rapaic, Milan R.
    Pisano, Alessandro
    Jelicic, Zoran D.
    2012 IEEE INTERNATIONAL CONFERENCE ON CONTROL APPLICATIONS (CCA), 2012, : 1008 - 1013
  • [48] Numerical method for the estimation of the fractional parameters in the fractional mobile/immobile advection-diffusion model
    Yu, Bo
    Jiang, Xiaoyun
    Qi, Haitao
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2018, 95 (6-7) : 1131 - 1150
  • [49] Numerical approximation of the optimal control of a population dynamics model
    Alahyane, Mohamed
    Soufyane, Abdelaziz
    Zahri, Mostafa
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2023, 39 (02) : 1583 - 1603
  • [50] Numerical simulation methods and analysis for the dynamics of the time-fractional KdV equation
    Cao, Haiyan
    Cheng, Xiujun
    Zhang, Qifeng
    PHYSICA D-NONLINEAR PHENOMENA, 2024, 460