Numerical Simulation of Space Fractional Order Schnakenberg Model

被引:0
|
作者
班亭亭 [1 ]
王玉兰 [1 ]
机构
[1] College of Science,Inner Mongolia University of Technology
基金
中国国家自然科学基金;
关键词
D O I
10.19884/j.1672-5220.202010081
中图分类号
O241.8 [微分方程、积分方程的数值解法];
学科分类号
070102 ;
摘要
A numerical solution of a fractional-order reaction-diffusion model is discussed. With the development of fractional-order differential equations, Schnakenberg model becomes more and more important. However, there are few researches on numerical simulation of Schnakenberg model with spatial fractional order. It is also important to find a simple and effective numerical method. In this paper, the Schnakenberg model is numerically simulated by Fourier spectral method. The Fourier transform is applied to transforming the partial differential equation into ordinary differential equation in space, and the fourth order Runge-Kutta method is used to solve the ordinary differential equation to obtain the numerical solution from the perspective of time. Simulation results show the effectiveness of the proposed method.
引用
下载
收藏
页码:181 / 186
页数:6
相关论文
共 50 条
  • [1] Numerical simulations for a Variable Order Fractional Schnakenberg model
    Hammouch, Z.
    Mekkaoui, T.
    Belgacem, F. B. M.
    10TH INTERNATIONAL CONFERENCE ON MATHEMATICAL PROBLEMS IN ENGINEERING, AEROSPACE AND SCIENCES (ICNPAA 2014), 2014, 1637 : 1450 - 1455
  • [2] Numerical simulation and theoretical analysis of pattern dynamics for the fractional-in-space Schnakenberg model
    Wang, Ji-Lei
    Han, Yu-Xing
    Chen, Qing-Tong
    Li, Zhi-Yuan
    Du, Ming-Jing
    Wang, Yu-Lan
    FRONTIERS IN PHYSICS, 2024, 12
  • [3] Structure preserving computational technique for fractional order Schnakenberg model
    Iqbal, Zafar
    Ahmed, Nauman
    Baleanu, Dumitru
    Rafiq, Muhammad
    Iqbal, Muhammad Sajid
    Rehman, Muhammad Aziz-ur
    COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (02):
  • [4] Structure preserving computational technique for fractional order Schnakenberg model
    Zafar Iqbal
    Nauman Ahmed
    Dumitru Baleanu
    Muhammad Rafiq
    Muhammad Sajid Iqbal
    Muhammad Aziz-ur Rehman
    Computational and Applied Mathematics, 2020, 39
  • [5] CHAOTIC DYNAMICS OF THE FRACTIONAL ORDER SCHNAKENBERG MODEL AND ITS CONTROL
    Uddin, Jasim
    Rana, S. M. Sohel
    MATHEMATICS IN APPLIED SCIENCES AND ENGINEERING, 2023, 4 (01): : 40 - 60
  • [6] The Numerical Simulation of Space-Time Variable Fractional Order Diffusion Equations
    Zhang, Hongmei
    Shen, Shujun
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2013, 6 (04) : 571 - 585
  • [7] Numerical simulation of the space fractional (3
    Dai, Dan-Dan
    Zhang, Wei
    Wang, Yu-Lan
    AIMS MATHEMATICS, 2022, 7 (06): : 10234 - 10244
  • [8] Numerical simulation and analysis of the stochastic HIV/AIDS model in fractional order
    Zafar, Zain Ul Abadin
    Darassi, Mahmoud H.
    Ahmad, Irfan
    Assiri, Taghreed A.
    Meetei, Mutum Zico
    Khan, Muhammad Altaf
    Hassan, Ahmed M.
    RESULTS IN PHYSICS, 2023, 53
  • [9] Analysis and numerical simulation of fractional order pine wilt disease model
    Padmavathi, Viswanathan
    Alagesan, Kandaswami
    Alhowaity, Awatif
    Ijaz Khan, Muhammad
    Hamam, Haneen
    Angayarkanni, Manivelu
    Govindan, Vediyappan
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2022, 36 (29):
  • [10] A numerical simulation of the fractional order Leptospirosis model using the supervise neural network
    Mukdasai, Kanit
    Sabir, Zulqurnain
    Raja, Muhammad Asif Zahoor
    Sadat, R.
    Ali, Mohamed R.
    Singkibud, Peerapongpat
    ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (12) : 12431 - 12441