Numerical Simulation of Space Fractional Order Schnakenberg Model

被引:0
|
作者
班亭亭 [1 ]
王玉兰 [1 ]
机构
[1] College of Science,Inner Mongolia University of Technology
基金
中国国家自然科学基金;
关键词
D O I
10.19884/j.1672-5220.202010081
中图分类号
O241.8 [微分方程、积分方程的数值解法];
学科分类号
070102 ;
摘要
A numerical solution of a fractional-order reaction-diffusion model is discussed. With the development of fractional-order differential equations, Schnakenberg model becomes more and more important. However, there are few researches on numerical simulation of Schnakenberg model with spatial fractional order. It is also important to find a simple and effective numerical method. In this paper, the Schnakenberg model is numerically simulated by Fourier spectral method. The Fourier transform is applied to transforming the partial differential equation into ordinary differential equation in space, and the fourth order Runge-Kutta method is used to solve the ordinary differential equation to obtain the numerical solution from the perspective of time. Simulation results show the effectiveness of the proposed method.
引用
下载
收藏
页码:181 / 186
页数:6
相关论文
共 50 条
  • [41] Numerical simulation of fractional-order dynamical systems in noisy environments
    Zeinab Salamat Mostaghim
    Behrouz Parsa Moghaddam
    Hossein Samimi Haghgozar
    Computational and Applied Mathematics, 2018, 37 : 6433 - 6447
  • [42] Numerical simulation algorithm for fractional-order systems implemented in CUDA
    Rosu, Florin
    Bonchis, Cosmin
    Kaslik, Eva
    2020 22ND INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING (SYNASC 2020), 2020, : 63 - 66
  • [43] Numerical simulation of the distributed-order time-space fractional Bloch-Torrey equation with variable coefficients
    Zhang, Mengchen
    Liu, Fawang
    Turner, Ian W.
    Anh, Vo V.
    APPLIED MATHEMATICAL MODELLING, 2024, 129 : 169 - 190
  • [44] LOCAL MESHLESS COLLOCATION SCHEME FOR NUMERICAL SIMULATION OF SPACE FRACTIONAL PDE
    Shakeel, Mehnaz
    Khan, Muhammad Nawaz
    Ahmad, Imtiaz
    Ahmad, Hijaz
    Jarasthitikulchai, Nantapat
    Sudsutad, Weerawat
    THERMAL SCIENCE, 2023, 27 (Special Issue 1): : S101 - S109
  • [45] An efficient numerical technique for a biological population model of fractional order
    Attia, Nourhane
    Akgul, Ali
    Seba, Djamila
    Nour, Abdelkader
    CHAOS SOLITONS & FRACTALS, 2020, 141
  • [46] Numerical algorithm for fractional order population dynamics model with delay
    Gorbova, T. V.
    IZVESTIYA INSTITUTA MATEMATIKI I INFORMATIKI-UDMURTSKOGO GOSUDARSTVENNOGO UNIVERSITETA, 2021, 57 : 91 - 103
  • [47] Numerical approach for the fractional order cable model with theoretical analyses
    Ali, Umair
    Naeem, Muhammad
    Ganie, Abdul Hamid
    Fathima, Dowlath
    Salama, Fouad Mohammad
    Abdullah, Farah Aini
    FRONTIERS IN PHYSICS, 2023, 11
  • [48] Comparison of Numerical Methods of the SEIR Epidemic Model of Fractional Order
    Zeb, Anwar
    Khan, Madad
    Zaman, Gul
    Momani, Shaher
    Erturk, Vedat Suat
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2014, 69 (1-2): : 81 - 89
  • [49] A fractional order numerical study for the influenza disease mathematical model
    Sabir, Zulqurnain
    Ben Said, Salem
    Al-Mdallal, Qasem
    ALEXANDRIA ENGINEERING JOURNAL, 2023, 65 : 615 - 626
  • [50] Numerical Analysis of Fractional Order Epidemic Model of Childhood Diseases
    Haq, Fazal
    Shahzad, Muhammad
    Muhammad, Shakoor
    Wahab, Hafiz Abdul
    Rahman, Ghaus Ur
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2017, 2017