Robust location parameter estimation in the presence of adversary

被引:0
|
作者
Paudel, Santosh [1 ,2 ]
Chen, Hao [3 ,4 ,5 ]
Himed, Braham [6 ]
机构
[1] Boise State Univ, Elect & Comp Engn, Boise, ID 83725 USA
[2] Boise State Univ, Boise, ID 83725 USA
[3] Syracuse Univ, Elect Engn, Syracuse, NY USA
[4] Syracuse Univ, Syracuse, NY USA
[5] Boise State Univ, Dept Elect & Comp Engn & Comp Sci, Boise, ID USA
[6] Air Force Res Lab, Div Res Fellow, Wright Patterson AFB, OH USA
关键词
Two-person zero sum game; Robust estimator; Min-max estimator; Saddle-point solution; DISTRIBUTED ESTIMATION; STATE ESTIMATION;
D O I
10.1016/j.dsp.2023.104204
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In classical parameter estimation settings, sensor observation models are often assumed to be known. However, when the sensors themselves become unreliable, the traditional observation models may no longer hold. It is then expected that estimation performance would degrade due to the abnormal behavior of sensor observations. We formulate the estimation problem as a two-person zero-sum game and propose a mini-max estimator with the optimization goal to minimize the worst possible estimation error. We show that there exists a saddle-point solution for a single sensor observation. We then apply our result and characterize the estimation performance for networks with multiple sensors. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Noise Enhancement in Robust Estimation of Location
    Pan, Yan
    Duan, Fabing
    Chapeau-Blondeau, Francois
    Abbott, Derek
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2018, 66 (08) : 1953 - 1966
  • [42] Robust estimation of multivariate location and shape
    Rocke, D. M.
    Woodruff, D. L.
    Journal of Statistical Planning and Inference, 57 (02):
  • [43] Robust location estimation under dependence
    Fried, Roland
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2007, 77 (02) : 131 - 147
  • [44] Robust Location Estimation with Possibilistic Clustering
    Chen Bin
    Li Bin
    Pan Zhisong
    2009 ISECS INTERNATIONAL COLLOQUIUM ON COMPUTING, COMMUNICATION, CONTROL, AND MANAGEMENT, VOL III, 2009, : 312 - +
  • [45] ROBUST PARAMETER ESTIMATION OF CHAOTIC SYSTEMS
    Springer, Sebastian
    Haario, Heikki
    Shemyakin, Vladimir
    Kalachev, Leonid
    Shchepakin, Denis
    INVERSE PROBLEMS AND IMAGING, 2019, 13 (06) : 1189 - 1212
  • [46] Robust parameter estimation for mixture model
    Tadjudin, S
    Landgrebe, DA
    IGARSS '98 - 1998 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, PROCEEDINGS VOLS 1-5: SENSING AND MANAGING THE ENVIRONMENT, 1998, : 1025 - 1027
  • [47] A robust interactive estimation of the regularization parameter
    Lima, Williams A.
    Silva, Joao B. C.
    Santos, Darciclea F.
    Costa, Jesse C.
    GEOPHYSICS, 2019, 84 (03) : IM19 - IM33
  • [48] Robust Parameter Estimation in Dynamic Systems
    Ekaterina Kostina
    Optimization and Engineering, 2004, 5 : 461 - 484
  • [49] Robust parameter estimation in computer vision
    Stewart, CV
    SIAM REVIEW, 1999, 41 (03) : 513 - 537
  • [50] Robust parameter estimation in dynamic systems
    Kostina, E
    OPTIMIZATION AND ENGINEERING, 2004, 5 (04) : 461 - 484