Robust parameter estimation in dynamic systems

被引:5
|
作者
Kostina, E [1 ]
机构
[1] Heidelberg Univ, Interdisciplinary Ctr Sci Comp, IWR, D-69120 Heidelberg, Germany
关键词
parameter estimation; DAE; l(1) optimization; Gauss-Newton method; applications in chemistry;
D O I
10.1023/B:OPTE.0000042035.67293.92
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper we present a practical method for robust parameter estimation in dynamic systems. In our study we follow the very successful approach for solving optimization problems in dynamic systems, namely the boundary value problem (BVP) approach. The suggested method combines multiple shooting for parameterizing dynamics, a flexible realization of the BVP principle, with a fast Gauss-Newton algorithm for solving the resulting constrained l(1) problem. We give an overview of the theoretical background as well as the details of a numerical implementation. We discuss why the Gauss-Newton algorithm, which is known to perform well mainly on well-conditioned problems, is appropriate for parameter estimation problems, while quasi-Newton methods have only limited use for parameter estimation. The method is implemented on the basis of the direct multiple shooting method as implemented in PARFIT, thus inheriting all basic properties of PARFIT such as numerical stability, reliability and efficiency. The new code has been successfully applied to real-life parameter estimation problems in enzyme and chemical kinetics.
引用
收藏
页码:461 / 484
页数:24
相关论文
共 50 条
  • [1] Robust Parameter Estimation in Dynamic Systems
    Ekaterina Kostina
    [J]. Optimization and Engineering, 2004, 5 : 461 - 484
  • [2] ROBUST PARAMETER-ESTIMATION OF NONLINEAR DYNAMIC-SYSTEMS
    PROSKAWETZ, KO
    [J]. ZEITSCHRIFT FUR FLUGWISSENSCHAFTEN UND WELTRAUMFORSCHUNG, 1991, 15 (01): : 12 - 18
  • [3] Robust and efficient parameter estimation in dynamic models of biological systems
    Gabor, Attila
    Banga, Julio R.
    [J]. BMC SYSTEMS BIOLOGY, 2015, 9
  • [4] Parameter estimation in dynamic systems
    Stortelder, WJH
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 1996, 42 (2-3) : 135 - 142
  • [5] Parameter estimation in dynamic systems
    Schittkowski, K
    [J]. PROGRESS IN OPTIMIZATION: CONTRIBUTIONS FROM AUSTRALASIA, 2000, 39 : 183 - 204
  • [6] ROBUST PARAMETER ESTIMATION OF CHAOTIC SYSTEMS
    Springer, Sebastian
    Haario, Heikki
    Shemyakin, Vladimir
    Kalachev, Leonid
    Shchepakin, Denis
    [J]. INVERSE PROBLEMS AND IMAGING, 2019, 13 (06) : 1189 - 1212
  • [7] Bootstrapping Parameter Estimation in Dynamic Systems
    Lodhi, Huma
    Gilbert, David
    [J]. DISCOVERY SCIENCE, 2011, 6926 : 194 - 208
  • [8] Robust parameter estimation in nonlinear dynamic process models
    Rodríguez-Fernández, M
    Alonso, AA
    Banga, JR
    [J]. EUROPEAN SYMPOSIUM ON COMPUTER-AIDED PROCESS ENGINEERING-15, 20A AND 20B, 2005, 20a-20b : 37 - 42
  • [9] ONLINE FAULT-DIAGNOSIS OF DYNAMIC-SYSTEMS VIA ROBUST PARAMETER-ESTIMATION
    BLOCH, G
    OULADSINE, M
    THOMAS, P
    [J]. CONTROL ENGINEERING PRACTICE, 1995, 3 (12) : 1709 - 1717
  • [10] Noise-robust parameter estimation of linear systems
    Emara-Shabaik, HE
    [J]. JOURNAL OF VIBRATION AND CONTROL, 2000, 6 (05) : 727 - 740