Robust location parameter estimation in the presence of adversary

被引:0
|
作者
Paudel, Santosh [1 ,2 ]
Chen, Hao [3 ,4 ,5 ]
Himed, Braham [6 ]
机构
[1] Boise State Univ, Elect & Comp Engn, Boise, ID 83725 USA
[2] Boise State Univ, Boise, ID 83725 USA
[3] Syracuse Univ, Elect Engn, Syracuse, NY USA
[4] Syracuse Univ, Syracuse, NY USA
[5] Boise State Univ, Dept Elect & Comp Engn & Comp Sci, Boise, ID USA
[6] Air Force Res Lab, Div Res Fellow, Wright Patterson AFB, OH USA
关键词
Two-person zero sum game; Robust estimator; Min-max estimator; Saddle-point solution; DISTRIBUTED ESTIMATION; STATE ESTIMATION;
D O I
10.1016/j.dsp.2023.104204
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In classical parameter estimation settings, sensor observation models are often assumed to be known. However, when the sensors themselves become unreliable, the traditional observation models may no longer hold. It is then expected that estimation performance would degrade due to the abnormal behavior of sensor observations. We formulate the estimation problem as a two-person zero-sum game and propose a mini-max estimator with the optimization goal to minimize the worst possible estimation error. We show that there exists a saddle-point solution for a single sensor observation. We then apply our result and characterize the estimation performance for networks with multiple sensors. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] ESTIMATION THEORY OF LOCATION PARAMETER
    KAGAN, AM
    SANKHYA-THE INDIAN JOURNAL OF STATISTICS SERIES A, 1966, 28 (DEC): : 335 - 352
  • [22] Estimation of robust parameter in the presence of conformal polarization sensitive array element failure
    Lan X.
    Jiang L.
    Geng M.
    Wang Y.
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2023, 50 (03): : 192 - 201
  • [23] On robust analysis of a normal location parameter
    Choy, STB
    Smith, AFM
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1997, 59 (02): : 463 - 474
  • [24] A NOTE ON ROBUST ESTIMATION OF LOCATION
    CHAUDHURI, P
    SENGUPTA, D
    STATISTICS & PROBABILITY LETTERS, 1993, 18 (03) : 241 - 244
  • [25] Outliers and robust parameter estimation
    Johnson, ML
    NUMERICAL COMPUTER METHODS, PART C, 2000, 321 : 417 - 424
  • [26] Adaptive Parameter Robust Estimation
    Mohammed, Dhafar S.
    Habibi, Saeid
    Prokhorov, Danil
    2008 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-8, 2008, : 2948 - +
  • [27] Robust 3-D Location Estimation in the Presence of Anchor Placement and Range Errors
    Suliman, Mohamed A.
    Ballal, Tarig
    AlSharif, Mohammed H.
    Saad, Mohamed
    Al-Naffouri, Tareq Y.
    2018 15TH WORKSHOP ON POSITIONING, NAVIGATION AND COMMUNICATIONS (WPNC), 2018,
  • [28] Robust Weighted Least Squares Estimation of Regression Parameter in the Presence of Outliers and Heteroscedastic Errors
    Rasheed, Bello Abdulkadir
    Adnan, Robiah
    Saffari, Seyed Ehsan
    Pati, Kafi dano
    JURNAL TEKNOLOGI, 2014, 71 (01):
  • [29] On improved estimation of the larger location parameter
    Garg, Naresh
    Patra, Lakshmi Kanta
    Misra, Neeraj
    STATISTICAL PAPERS, 2024, 65 (09) : 5719 - 5752
  • [30] ON SHRINKAGE ESTIMATION OF THE EXPONENTIAL LOCATION PARAMETER
    EBRAHIMI, N
    HOSMANE, B
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1987, 16 (09) : 2623 - 2637