Leaky FinFET for Reservoir Computing with Temporal Signal Processing

被引:7
|
作者
Han, Joon-Kyu [1 ]
Yun, Seong-Yun [1 ]
Yu, Ji-Man [1 ]
Choi, Yang-Kyu [1 ]
机构
[1] Korea Adv Inst Sci & Technol KAIST, Sch Elect Engn, Daejeon 34141, South Korea
基金
新加坡国家研究基金会;
关键词
charge trap; leaky fin-shaped field-effect transistor(L-FinFET); reservoir computing; short-term memory; temporal signal processing;
D O I
10.1021/acsami.3c02630
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Reservoir computing can greatly reduce the hardware andtrainingcosts of recurrent neural networks with temporal data processing.To implement reservoir computing in a hardware form, physical reservoirstransforming sequential inputs into a high-dimensional feature spaceare necessary. In this work, a physical reservoir with a leaky fin-shapedfield-effect transistor (L-FinFET) is demonstrated by the positiveuse of a short-term memory property arising from the absence of anenergy barrier to suppress the tunneling current. Nevertheless, theL-FinFET reservoir does not lose its multiple memory states. The L-FinFETreservoir consumes very low power when encoding temporal inputs becausethe gate serves as an enabler of the write operation, even in theoff-state, due to its physical insulation from the channel. In addition,the small footprint area arising from the scalability of the FinFETdue to its multiple-gate structure is advantageous for reducing thechip size. After the experimental proof of 4-bit reservoir operationswith 16 states for temporal signal processing, handwritten digitsin the Modified National Institute of Standards and Technology datasetare classified by reservoir computing.
引用
收藏
页码:26960 / 26966
页数:7
相关论文
共 50 条
  • [1] A Physical Reservoir Computing Model Based on Volatile Memristor for Temporal Signal Processing
    Liang, Xiangpeng
    Zhong, Yanan
    Li, Xinyi
    Huang, Heyi
    Li, Tingyu
    Tang, Jianshi
    Bin Gao
    Qian, He
    Wu, Huaqiang
    Heidari, Hadi
    2022 29TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS, CIRCUITS AND SYSTEMS (IEEE ICECS 2022), 2022,
  • [2] Reservoir computing system using discrete memristor for chaotic temporal signal processing
    Deng, Yue
    Zhang, Shuting
    Yuan, Fang
    Li, Yuxia
    Wang, Guangyi
    CHAOS SOLITONS & FRACTALS, 2025, 194
  • [3] Fully Ferroelectric-FETs Reservoir Computing Network for Temporal and Random Signal Processing
    Tang, Mingfeng
    Mei, Junyao
    Zhan, Xuepeng
    Wang, Chengcheng
    Chai, Junshuai
    Xu, Hao
    Wang, Xiaolei
    Wu, Jixuan
    Chen, Jiezhi
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2023, 70 (06) : 3372 - 3377
  • [4] An Optoelectronic Reservoir Computing for Temporal Information Processing
    Du, Wen
    Li, Caihong
    Huang, Yixuan
    Zou, Jihua
    Luo, Lingzhi
    Teng, Caihong
    Kuo, Hao-Chung
    Wu, Jiang
    Wang, Zhiming
    IEEE ELECTRON DEVICE LETTERS, 2022, 43 (03) : 406 - 409
  • [5] Dynamic memristor-based reservoir computing for high-efficiency temporal signal processing
    Yanan Zhong
    Jianshi Tang
    Xinyi Li
    Bin Gao
    He Qian
    Huaqiang Wu
    Nature Communications, 12
  • [6] Dynamic memristor-based reservoir computing for high-efficiency temporal signal processing
    Zhong, Yanan
    Tang, Jianshi
    Li, Xinyi
    Gao, Bin
    Qian, He
    Wu, Huaqiang
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [7] Natural quantum reservoir computing for temporal information processing
    Yudai Suzuki
    Qi Gao
    Ken C. Pradel
    Kenji Yasuoka
    Naoki Yamamoto
    Scientific Reports, 12
  • [8] Optical signal processing using photonic reservoir computing
    Salehi, Mohammad Reza
    Dehyadegari, Louiza
    JOURNAL OF MODERN OPTICS, 2014, 61 (17) : 1442 - 1451
  • [9] Natural quantum reservoir computing for temporal information processing
    Suzuki, Yudai
    Gao, Qi
    Pradel, Ken C.
    Yasuoka, Kenji
    Yamamoto, Naoki
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [10] Toward optical signal processing using Photonic Reservoir Computing
    Vandoorne, Kristof
    Dierckx, Wouter
    Schrauwen, Benjamin
    Verstraeten, David
    Baets, Roel
    Bienstman, Peter
    Van Campenhout, Jan
    OPTICS EXPRESS, 2008, 16 (15) : 11182 - 11192