Leaky FinFET for Reservoir Computing with Temporal Signal Processing

被引:7
|
作者
Han, Joon-Kyu [1 ]
Yun, Seong-Yun [1 ]
Yu, Ji-Man [1 ]
Choi, Yang-Kyu [1 ]
机构
[1] Korea Adv Inst Sci & Technol KAIST, Sch Elect Engn, Daejeon 34141, South Korea
基金
新加坡国家研究基金会;
关键词
charge trap; leaky fin-shaped field-effect transistor(L-FinFET); reservoir computing; short-term memory; temporal signal processing;
D O I
10.1021/acsami.3c02630
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Reservoir computing can greatly reduce the hardware andtrainingcosts of recurrent neural networks with temporal data processing.To implement reservoir computing in a hardware form, physical reservoirstransforming sequential inputs into a high-dimensional feature spaceare necessary. In this work, a physical reservoir with a leaky fin-shapedfield-effect transistor (L-FinFET) is demonstrated by the positiveuse of a short-term memory property arising from the absence of anenergy barrier to suppress the tunneling current. Nevertheless, theL-FinFET reservoir does not lose its multiple memory states. The L-FinFETreservoir consumes very low power when encoding temporal inputs becausethe gate serves as an enabler of the write operation, even in theoff-state, due to its physical insulation from the channel. In addition,the small footprint area arising from the scalability of the FinFETdue to its multiple-gate structure is advantageous for reducing thechip size. After the experimental proof of 4-bit reservoir operationswith 16 states for temporal signal processing, handwritten digitsin the Modified National Institute of Standards and Technology datasetare classified by reservoir computing.
引用
收藏
页码:26960 / 26966
页数:7
相关论文
共 50 条
  • [21] Using Reservoir Computing to Predict a Macroscopic Signal
    Andreev A.V.
    Antipov V.M.
    Badarin A.A.
    Bulletin of the Russian Academy of Sciences: Physics, 2023, 87 (10) : 1523 - 1527
  • [22] Visualising Temporal Data Using Reservoir Computing
    Wang, Tzai-Der
    Fyfe, Colin
    JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2013, 29 (04) : 695 - 709
  • [23] Reservoir Computing with Signal-Mixing Cavities
    Laporte, Floris
    Dambre, Joni
    Bienstman, Peter
    2017 19TH INTERNATIONAL CONFERENCE ON TRANSPARENT OPTICAL NETWORKS (ICTON), 2017,
  • [24] Photonic neuromorphic information processing and reservoir computing
    Lugnan, A.
    Katumba, A.
    Laporte, F.
    Freiberger, M.
    Sackesyn, S.
    Ma, C.
    Gooskens, E.
    Dambre, J.
    Bienstman, P.
    APL PHOTONICS, 2020, 5 (02)
  • [25] Human recognition with the optoelectronic reservoir-computing-based micro-Doppler radar signal processing
    Feng, Xingxing
    Ye, Kangpeng
    Lou, Chaoteng
    Suo, Xingmeng
    Song, Yujie
    Pang, Xiaodan
    Ozolins, Oskars
    Zhang, Lu
    Yu, Xianbin
    APPLIED OPTICS, 2022, 61 (19) : 5782 - 5789
  • [26] Biomembrane-Based Memcapacitive Reservoir Computing System for Energy-Efficient Temporal Data Processing
    Hossain, Md Razuan
    Mohamed, Ahmed Salah
    Armendarez, Nicholas X.
    Najem, Joseph S.
    Hasan, Md Sakib
    ADVANCED INTELLIGENT SYSTEMS, 2023, 5 (12)
  • [27] All physical reservoir computing system with tunable temporal dynamics for multi-timescale information processing
    Huang, Wanxin
    Wang, Yiru
    Ming, Jianyu
    Liu, Shanshuo
    Liu, Jing
    Fu, Jingwei
    Wang, Haotian
    Li, Wen
    Xie, Yannan
    Xie, Linghai
    Ling, Haifeng
    Huang, Wei
    INFOMAT, 2025,
  • [28] ACOUSTOOPTIC SIGNAL-PROCESSING AND COMPUTING
    LEE, JN
    VANDERLUGT, A
    PROCEEDINGS OF THE IEEE, 1989, 77 (10) : 1528 - 1557
  • [29] Spiking Reservoir Computing for Temporal Edge Intelligence on Loihi
    Gaurav, Ramashish
    Stewart, Terrence C.
    Yi, Yang
    2022 IEEE/ACM 7TH SYMPOSIUM ON EDGE COMPUTING (SEC 2022), 2022, : 526 - 530
  • [30] A Photomemristor With Temporal Dynamics for In-Sensor Reservoir Computing
    Cai, Bingqi
    Wang, Tianyu
    Wang, Chen
    Sun, Qingqing
    Zhang, David Wei
    Chen, Lin
    IEEE ELECTRON DEVICE LETTERS, 2024, 45 (04) : 570 - 573