Natural quantum reservoir computing for temporal information processing

被引:0
|
作者
Yudai Suzuki
Qi Gao
Ken C. Pradel
Kenji Yasuoka
Naoki Yamamoto
机构
[1] Keio University,Department of Mechanical Engineering
[2] Mitsubishi Chemical Corporation,Quantum Computing Center
[3] Science & Innovation Center,Department of Applied Physics and Physico
[4] Keio University,Informatics
[5] Keio University,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Reservoir computing is a temporal information processing system that exploits artificial or physical dissipative dynamics to learn a dynamical system and generate the target time-series. This paper proposes the use of real superconducting quantum computing devices as the reservoir, where the dissipative property is served by the natural noise added to the quantum bits. The performance of this natural quantum reservoir is demonstrated in a benchmark time-series regression problem and a practical problem classifying different objects based on temporal sensor data. In both cases the proposed reservoir computer shows a higher performance than a linear regression or classification model. The results indicate that a noisy quantum device potentially functions as a reservoir computer, and notably, the quantum noise, which is undesirable in the conventional quantum computation, can be used as a rich computation resource.
引用
收藏
相关论文
共 50 条
  • [1] Natural quantum reservoir computing for temporal information processing
    Suzuki, Yudai
    Gao, Qi
    Pradel, Ken C.
    Yasuoka, Kenji
    Yamamoto, Naoki
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [2] An Optoelectronic Reservoir Computing for Temporal Information Processing
    Du, Wen
    Li, Caihong
    Huang, Yixuan
    Zou, Jihua
    Luo, Lingzhi
    Teng, Caihong
    Kuo, Hao-Chung
    Wu, Jiang
    Wang, Zhiming
    IEEE ELECTRON DEVICE LETTERS, 2022, 43 (03) : 406 - 409
  • [3] Reservoir computing using dynamic memristors for temporal information processing
    Du, Chao
    Cai, Fuxi
    Zidan, Mohammed A.
    Ma, Wen
    Lee, Seung Hwan
    Lu, Wei D.
    NATURE COMMUNICATIONS, 2017, 8
  • [4] Reservoir computing using dynamic memristors for temporal information processing
    Chao Du
    Fuxi Cai
    Mohammed A. Zidan
    Wen Ma
    Seung Hwan Lee
    Wei D. Lu
    Nature Communications, 8
  • [5] Information Processing Capacity of Spin-Based Quantum Reservoir Computing Systems
    R. Martínez-Peña
    J. Nokkala
    G. L. Giorgi
    R. Zambrini
    M. C. Soriano
    Cognitive Computation, 2023, 15 : 1440 - 1451
  • [6] Information Processing Capacity of Spin-Based Quantum Reservoir Computing Systems
    Martinez-Pena, R.
    Nokkala, J.
    Giorgi, G. L.
    Zambrini, R.
    Soriano, M. C.
    COGNITIVE COMPUTATION, 2023, 15 (05) : 1440 - 1451
  • [7] Demonstration of quantum dot reservoir computing based on spatio-temporal optical processing
    Tate, Naoya
    Yamaguchi, Seiya
    Sakai, Shunichi
    Shimomura, Suguru
    Nishimura, Takahiro
    Kozuka, Jun
    Ogura, Yusuke
    Tanida, Jun
    APPLIED OPTICS, 2024, 63 (28) : G30 - G36
  • [8] Photonic neuromorphic information processing and reservoir computing
    Lugnan, A.
    Katumba, A.
    Laporte, F.
    Freiberger, M.
    Sackesyn, S.
    Ma, C.
    Gooskens, E.
    Dambre, J.
    Bienstman, P.
    APL PHOTONICS, 2020, 5 (02)
  • [9] Leaky FinFET for Reservoir Computing with Temporal Signal Processing
    Han, Joon-Kyu
    Yun, Seong-Yun
    Yu, Ji-Man
    Choi, Yang-Kyu
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (22) : 26960 - 26966
  • [10] Quantum computing and neural information processing
    Ventura, D
    Kak, S
    INFORMATION SCIENCES, 2000, 128 (3-4) : 147 - 148