Natural quantum reservoir computing for temporal information processing

被引:0
|
作者
Yudai Suzuki
Qi Gao
Ken C. Pradel
Kenji Yasuoka
Naoki Yamamoto
机构
[1] Keio University,Department of Mechanical Engineering
[2] Mitsubishi Chemical Corporation,Quantum Computing Center
[3] Science & Innovation Center,Department of Applied Physics and Physico
[4] Keio University,Informatics
[5] Keio University,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Reservoir computing is a temporal information processing system that exploits artificial or physical dissipative dynamics to learn a dynamical system and generate the target time-series. This paper proposes the use of real superconducting quantum computing devices as the reservoir, where the dissipative property is served by the natural noise added to the quantum bits. The performance of this natural quantum reservoir is demonstrated in a benchmark time-series regression problem and a practical problem classifying different objects based on temporal sensor data. In both cases the proposed reservoir computer shows a higher performance than a linear regression or classification model. The results indicate that a noisy quantum device potentially functions as a reservoir computer, and notably, the quantum noise, which is undesirable in the conventional quantum computation, can be used as a rich computation resource.
引用
收藏
相关论文
共 50 条
  • [21] Quantum Lego: Graph States for Quantum Computing and Information Processing
    Markham, Damian
    ERCIM NEWS, 2018, (112): : 19 - 19
  • [22] Photonic Reservoir Computing: a new approach to optical information processing
    Vandoorne, Kristof
    Fiers, Martin
    Verstraeten, David
    Schrauwen, Benjamin
    Dambre, Joni
    Bienstman, Peter
    PHOTONICS NORTH 2010, 2010, 7750
  • [23] Photonic Reservoir Computing: A New Approach to Optical Information Processing
    Vandoorne, Kristof
    Fiers, Martin
    Verstraeten, David
    Schrauwen, Benjamin
    Dambre, Joni
    Bienstman, Peter
    2010 12TH INTERNATIONAL CONFERENCE ON TRANSPARENT OPTICAL NETWORKS (ICTON), 2011,
  • [24] Temporal Information Processing on Noisy Quantum Computers
    Chen, Jiayin
    Nurdin, Hendra I.
    Yamamoto, Naoki
    PHYSICAL REVIEW APPLIED, 2020, 14 (02)
  • [25] Temporal information processing induced by quantum noise
    Kubota, Tomoyuki
    Suzuki, Yudai
    Kobayashi, Shumpei
    Tran, Quoc Hoan
    Yamamoto, Naoki
    Nakajima, Kohei
    PHYSICAL REVIEW RESEARCH, 2023, 5 (02):
  • [26] Photonic reservoir computing: a brain-inspired approach for information processing
    Bienstman, Peter
    Dambre, Joni
    Katumba, Andrew
    Freiberger, Matthias
    Laporte, Floris
    Lugnan, Alessio
    2018 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXPOSITION (OFC), 2018,
  • [27] Photonic information processing beyond Turing: an optoelectronic implementation of reservoir computing
    Larger, L.
    Soriano, M. C.
    Brunner, D.
    Appeltant, L.
    Gutierrez, J. M.
    Pesquera, L.
    Mirasso, C. R.
    Fischer, I.
    OPTICS EXPRESS, 2012, 20 (03): : 3241 - 3249
  • [28] A Physical Reservoir Computing Model Based on Volatile Memristor for Temporal Signal Processing
    Liang, Xiangpeng
    Zhong, Yanan
    Li, Xinyi
    Huang, Heyi
    Li, Tingyu
    Tang, Jianshi
    Bin Gao
    Qian, He
    Wu, Huaqiang
    Heidari, Hadi
    2022 29TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS, CIRCUITS AND SYSTEMS (IEEE ICECS 2022), 2022,
  • [29] Reservoir computing system using discrete memristor for chaotic temporal signal processing
    Deng, Yue
    Zhang, Shuting
    Yuan, Fang
    Li, Yuxia
    Wang, Guangyi
    CHAOS SOLITONS & FRACTALS, 2025, 194
  • [30] Quantum reservoir processing
    Sanjib Ghosh
    Andrzej Opala
    Michał Matuszewski
    Tomasz Paterek
    Timothy C. H. Liew
    npj Quantum Information, 5