Environmental radon control in the 700 m underground laboratory at JUNO

被引:0
|
作者
Cui, Chenyang [1 ,2 ]
Zhao, Jie [1 ]
Li, Gaosong [1 ]
Zhang, Yongpeng [1 ]
Guo, Cong [1 ]
Qu, Zhenning [1 ,2 ]
Wang, Yifang [1 ]
Li, Xiaonan [1 ]
Wen, Liangjian [1 ]
He, Miao [1 ]
Sisti, Monica [3 ,4 ]
机构
[1] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Beijing, Peoples R China
[3] INFN Milano Bicocca, Milan, Italy
[4] Univ Milano Bicocca, Milan, Italy
来源
EUROPEAN PHYSICAL JOURNAL C | 2024年 / 84卷 / 02期
关键词
Atomic physics - Groundwater - Neutrons - Ventilation;
D O I
10.1140/epjc/s10052-024-12474-6
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The Jiangmen Underground Neutrino Observatory is constructing the world's largest liquid scintillator detector, with a 20 kt target mass and approximately 700 m of overburden. The total underground space of civil construction is around 300,000 m3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>3$$\end{document}, with the main hall comprising about 120,000 m3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>3$$\end{document}, making it the largest experimental hall in the world. Maintaining a low radon concentration in the underground air is crucial for both human health and the accuracy of experiments involving rare decay detection, such as neutrino and dark matter experiments. To ensure human health and the integrity of neutrino physics experiments, the nominal radon concentration in the main hall must be kept below 200 Bq/m3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>3$$\end{document} with a maximum value below 400 Bq/m3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>3$$\end{document}. Introduction of fresh air from above ground can significantly lower radon concentration. A benchmark experiment conducted in the refuge room near the main hall revealed that the radon emanating from underground water is a significant source of radon in the underground air. The total underground ventilation rate is approximately 160,000 m3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>3$$\end{document}/h of fresh air with about 30 Bq/m3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>3$$\end{document}222\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{222}$$\end{document}Rn from the bottom of the vertical tunnel after the installation of powerful fans. Of this, 55,000 m3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>3$$\end{document}/h is used for ventilation in the main hall. As a result of these measures, the radon concentration inside the main hall has decreased from 1600 Bq/m3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>3$$\end{document} to below 200 Bq/m3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>3$$\end{document} under stable working conditions, with exceptions during rare adverse weather events or fan failures. The employed strategies to control radon concentration in the underground air are described in this paper.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Environmental Control Plasma Educational Laboratory
    Genis, V.
    Fridman, A.
    Gutsol, A.
    [J]. PLASMA ASSISTED DECONTAMINATION OF BIOLOGICAL AND CHEMICAL AGENTS, 2008, : 151 - +
  • [32] A monitor for continuous and remote control of radon level and environmental parameters
    Roca, V
    Boiano, A
    Esposito, A
    Guardato, S
    Pugliese, M
    Sabbarese, C
    Venoso, G
    [J]. 2004 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD, VOLS 1-7, 2004, : 1563 - 1566
  • [33] The effect of environmental parameters on radon concentration measured in an underground dead-end gallery (Vyhne, Slovakia)
    Iveta Smetanová
    Susana Alexandra Barbosa
    Marek Vďačný
    Kristian Csicsay
    Guilherme Amaral Silva
    Ľubica Mareková
    Carlos Almeida
    [J]. Journal of Radioanalytical and Nuclear Chemistry, 2023, 332 : 1733 - 1742
  • [34] The effect of environmental parameters on radon concentration measured in an underground dead-end gallery (Vyhne, Slovakia)
    Smetanova, Iveta
    Barbosa, Susana Alexandra
    Vdacny, Marek
    Csicsay, Kristian
    Silva, Guilherme Amaral
    Marekova, Lubica
    Almeida, Carlos
    [J]. JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY, 2023, 332 (06) : 1733 - 1742
  • [35] Chain Effect and Control of Environmental Disaster Induced by Underground Mining
    Gao, Feng
    Zhou, Keping
    Luo, Xianwei
    Zhai, Jianbo
    [J]. ADVANCES IN COMPUTER SCIENCE, INTELLIGENT SYSTEM AND ENVIRONMENT, VOL 2, 2011, 105 : 53 - 59
  • [36] ENVIRONMENTAL-CONTROL IN RURAL UNDERGROUND-STORAGE STRUCTURES
    BARTALI, E
    TLEMCANI, K
    [J]. AGRICULTURAL ENGINEERING, VOLS 1-4: LAND AND WATER USE, AGRICULTURAL BUILDINGS, AGRICULTURAL MECHANISATION, POWER, PROCESSING AND SYSTEMS, 1989, : 2211 - 2216
  • [37] Sustainable underground spaces: Design, environmental control and energy conservation
    Cao, Shi-Jie
    Leng, Jiawei
    Qi, Dahai
    Kumar, Prashant
    Chen, Tingsen
    [J]. ENERGY AND BUILDINGS, 2022, 257
  • [38] Measurements of muon flux at 1070 m vertical depth in the Boulby underground laboratory
    Robinson, M
    Kudryavtsev, VA
    Lüscher, R
    McMillan, JE
    Lightfoot, PK
    Spooner, NJC
    Smith, NJT
    Liubarsky, I
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 511 (03): : 347 - 353
  • [39] Monte Carlo simulation of environmental background sources of a HPGe detector operating in underground laboratory
    Palusova, Veronika
    Breier, Robert
    Povinec, Pavel P.
    [J]. JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY, 2018, 318 (03) : 2329 - 2334
  • [40] Monte Carlo simulation of environmental background sources of a HPGe detector operating in underground laboratory
    Veronika Palušová
    Robert Breier
    Pavel P. Povinec
    [J]. Journal of Radioanalytical and Nuclear Chemistry, 2018, 318 : 2329 - 2334