Environmental radon control in the 700 m underground laboratory at JUNO

被引:0
|
作者
Cui, Chenyang [1 ,2 ]
Zhao, Jie [1 ]
Li, Gaosong [1 ]
Zhang, Yongpeng [1 ]
Guo, Cong [1 ]
Qu, Zhenning [1 ,2 ]
Wang, Yifang [1 ]
Li, Xiaonan [1 ]
Wen, Liangjian [1 ]
He, Miao [1 ]
Sisti, Monica [3 ,4 ]
机构
[1] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Beijing, Peoples R China
[3] INFN Milano Bicocca, Milan, Italy
[4] Univ Milano Bicocca, Milan, Italy
来源
EUROPEAN PHYSICAL JOURNAL C | 2024年 / 84卷 / 02期
关键词
Atomic physics - Groundwater - Neutrons - Ventilation;
D O I
10.1140/epjc/s10052-024-12474-6
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The Jiangmen Underground Neutrino Observatory is constructing the world's largest liquid scintillator detector, with a 20 kt target mass and approximately 700 m of overburden. The total underground space of civil construction is around 300,000 m3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>3$$\end{document}, with the main hall comprising about 120,000 m3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>3$$\end{document}, making it the largest experimental hall in the world. Maintaining a low radon concentration in the underground air is crucial for both human health and the accuracy of experiments involving rare decay detection, such as neutrino and dark matter experiments. To ensure human health and the integrity of neutrino physics experiments, the nominal radon concentration in the main hall must be kept below 200 Bq/m3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>3$$\end{document} with a maximum value below 400 Bq/m3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>3$$\end{document}. Introduction of fresh air from above ground can significantly lower radon concentration. A benchmark experiment conducted in the refuge room near the main hall revealed that the radon emanating from underground water is a significant source of radon in the underground air. The total underground ventilation rate is approximately 160,000 m3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>3$$\end{document}/h of fresh air with about 30 Bq/m3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>3$$\end{document}222\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{222}$$\end{document}Rn from the bottom of the vertical tunnel after the installation of powerful fans. Of this, 55,000 m3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>3$$\end{document}/h is used for ventilation in the main hall. As a result of these measures, the radon concentration inside the main hall has decreased from 1600 Bq/m3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>3$$\end{document} to below 200 Bq/m3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>3$$\end{document} under stable working conditions, with exceptions during rare adverse weather events or fan failures. The employed strategies to control radon concentration in the underground air are described in this paper.
引用
收藏
页数:11
相关论文
共 50 条
  • [11] Underground distribution vaults with environmental control
    Courchesne, P
    [J]. 2000 IEEE ESMO - 2000 IEEE 9TH INTERNATIONAL CONFERENCE ON TRANSMISSION & DISTRIBUTION CONSTRUCTION, OPERATION & LIVE-LINE MAINTENANCE PROCEEDINGS, 2000, : 259 - 265
  • [12] Environmental control of the German radon reference chamber
    Honig, A
    Paul, A
    Rottger, S
    Keyser, U
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1998, 416 (2-3): : 525 - 530
  • [13] Chronos, Kairos, and the environmental control against radon
    Bertolaccini, Luca
    Casiraghi, Monica
    Spaggiari, Lorenzo
    [J]. EUROPEAN JOURNAL OF CANCER PREVENTION, 2024, 33 (03) : 241 - 242
  • [14] Daily and seasonal radon variability in the underground low-background laboratory in Belgrade, Serbia
    Udovicic, V.
    Filipovic, J.
    Dragic, A.
    Banjanac, R.
    Jokovic, D.
    Maletic, D.
    Grabez, B.
    Veselinovic, N.
    [J]. RADIATION PROTECTION DOSIMETRY, 2014, 160 (1-3) : 62 - 64
  • [15] The CR-39 etching optimization and measurement for radon in China Jinping Underground Laboratory
    Cuihong Liu
    Zhi Zeng
    Hao Ma
    Jianping Cheng
    Junli Li
    Hui Zhang
    [J]. Journal of Radioanalytical and Nuclear Chemistry, 2018, 318 : 1369 - 1377
  • [16] REVIEW OF LONG-TERM RADON STUDIES AT THE GRAN-SASSO-UNDERGROUND-LABORATORY
    BASSIGNANI, A
    BAM, BB
    COLOMBO, G
    DEKHISSI, H
    FANTONI, RF
    GIACOMELLI, G
    GIACOMELLI, GM
    SARTORIO, C
    [J]. RADIATION MEASUREMENTS, 1995, 25 (1-4) : 557 - 560
  • [17] The CR-39 etching optimization and measurement for radon in China Jinping Underground Laboratory
    Liu, Cuihong
    Zeng, Zhi
    Ma, Hao
    Cheng, Jianping
    Li, Junli
    Zhang, Hui
    [J]. JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY, 2018, 318 (02) : 1369 - 1377
  • [18] Environmental gamma background measurements in China Jinping Underground Laboratory
    Zeng, Zhi
    Su, Jian
    Ma, Hao
    Yi, Hengguan
    Cheng, Jianping
    Yue, Qian
    Li, Junli
    Zhang, Hui
    [J]. JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY, 2014, 301 (02) : 443 - 450
  • [19] Environmental gamma background measurements in China Jinping Underground Laboratory
    Zhi Zeng
    Jian Su
    Hao Ma
    Hengguan Yi
    Jianping Cheng
    Qian Yue
    Junli Li
    Hui Zhang
    [J]. Journal of Radioanalytical and Nuclear Chemistry, 2014, 301 : 443 - 450
  • [20] A Review of Ventilation and Environmental Control of Underground Spaces
    Yang, Bin
    Yao, Huangcheng
    Wang, Faming
    [J]. ENERGIES, 2022, 15 (02)