Enumeration of Rooted Binary Unlabeled Galled Trees

被引:0
|
作者
Agranat-Tamir, Lily [1 ]
Mathur, Shaili [1 ]
Rosenberg, Noah A. [1 ]
机构
[1] Stanford Univ, Dept Biol, Stanford, CA 94305 USA
关键词
Galled trees; Phylogenetics; Unlabeled trees; PHYLOGENETIC NETWORKS; CHILD;
D O I
10.1007/s11538-024-01270-8
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Rooted binary galled trees generalize rooted binary trees to allow a restricted class of cycles, known as galls. We build upon the Wedderburn-Etherington enumeration of rooted binary unlabeled trees with n leaves to enumerate rooted binary unlabeled galled trees with n leaves, also enumerating rooted binary unlabeled galled trees with n leaves and g galls, 0 <= g <= Ln-12 RIGHT FLOOR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0 \leqslant g \leqslant \lfloor \frac{n-1}{2} \rfloor $$\end{document}. The enumerations rely on a recursive decomposition that considers subtrees descended from the nodes of a gall, adopting a restriction on galls that amounts to considering only the rooted binary normal unlabeled galled trees in our enumeration. We write an implicit expression for the generating function encoding the numbers of trees for all n. We show that the number of rooted binary unlabeled galled trees grows with 0.0779(4.8230n)n-32\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.0779(4.8230<^>n)n<^>{-\frac{3}{2}}$$\end{document}, exceeding the growth 0.3188(2.4833n)n-32\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.3188(2.4833<^>n)n<^>{-\frac{3}{2}}$$\end{document} of the number of rooted binary unlabeled trees without galls. However, the growth of the number of galled trees with only one gall has the same exponential order 2.4833 as the number with no galls, exceeding it only in the subexponential term, 0.3910n12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.3910n<^>{\frac{1}{2}}$$\end{document} compared to 0.3188n-32\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.3188n<^>{-\frac{3}{2}}$$\end{document}. For a fixed number of leaves n, the number of galls g that produces the largest number of rooted binary unlabeled galled trees lies intermediate between the minimum of g=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g=0$$\end{document} and the maximum of g=Ln-12 RIGHT FLOOR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g=\lfloor \frac{n-1}{2} \rfloor $$\end{document}. We discuss implications in mathematical phylogenetics.
引用
收藏
页数:35
相关论文
共 50 条
  • [41] Counting Embeddings of Rooted Trees into Families of Rooted Trees
    Gittenberger, Bernhard
    Golebiewski, Zbigniew
    Larcher, Isabella
    Sulkowska, Malgorzata
    ELECTRONIC JOURNAL OF COMBINATORICS, 2022, 29 (03):
  • [42] Enumeration of unlabeled directed hypergraphs
    Qian, Jianguo
    ELECTRONIC JOURNAL OF COMBINATORICS, 2013, 20 (01):
  • [43] Enumeration of unlabeled uniform hypergraphs
    Qian, Jianguo
    DISCRETE MATHEMATICS, 2014, 326 : 66 - 74
  • [45] Enumeration and Coding of Binary AIFV-m Code Trees
    Onishi, Genta
    Hashimoto, Kengo
    Iwata, Ken-ichi
    Yamamoto, Hirosuke
    2022 INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY AND ITS APPLICATIONS, ISITA, 2022, : 94 - 98
  • [46] Asymptotic enumeration of compacted binary trees of bounded right height
    Genitrini, Antoine
    Gittenberger, Bernhard
    Kauers, Manuel
    Wallner, Michael
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2020, 172
  • [47] Enumeration of algebras close to absolutely free algebras and binary trees
    Petrogradsky, VM
    JOURNAL OF ALGEBRA, 2005, 290 (02) : 337 - 371
  • [48] ENUMERATION OF ROOTED TRIANGULAR MAPS
    MULLIN, RC
    AMERICAN MATHEMATICAL MONTHLY, 1964, 71 (09): : 1007 - &
  • [49] Enumeration and Coding of Compact Code Trees for Binary AIFV Codes
    Hashimoto, Kengo
    Iwata, Ken-ichi
    Yamamoto, Hirosuke
    2019 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2019, : 1527 - 1531
  • [50] The characterization of topology: A comparison of four topological indices for rooted binary trees
    Berntson, GM
    JOURNAL OF THEORETICAL BIOLOGY, 1995, 177 (03) : 271 - 281