Enumeration of Rooted Binary Unlabeled Galled Trees

被引:0
|
作者
Agranat-Tamir, Lily [1 ]
Mathur, Shaili [1 ]
Rosenberg, Noah A. [1 ]
机构
[1] Stanford Univ, Dept Biol, Stanford, CA 94305 USA
关键词
Galled trees; Phylogenetics; Unlabeled trees; PHYLOGENETIC NETWORKS; CHILD;
D O I
10.1007/s11538-024-01270-8
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Rooted binary galled trees generalize rooted binary trees to allow a restricted class of cycles, known as galls. We build upon the Wedderburn-Etherington enumeration of rooted binary unlabeled trees with n leaves to enumerate rooted binary unlabeled galled trees with n leaves, also enumerating rooted binary unlabeled galled trees with n leaves and g galls, 0 <= g <= Ln-12 RIGHT FLOOR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0 \leqslant g \leqslant \lfloor \frac{n-1}{2} \rfloor $$\end{document}. The enumerations rely on a recursive decomposition that considers subtrees descended from the nodes of a gall, adopting a restriction on galls that amounts to considering only the rooted binary normal unlabeled galled trees in our enumeration. We write an implicit expression for the generating function encoding the numbers of trees for all n. We show that the number of rooted binary unlabeled galled trees grows with 0.0779(4.8230n)n-32\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.0779(4.8230<^>n)n<^>{-\frac{3}{2}}$$\end{document}, exceeding the growth 0.3188(2.4833n)n-32\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.3188(2.4833<^>n)n<^>{-\frac{3}{2}}$$\end{document} of the number of rooted binary unlabeled trees without galls. However, the growth of the number of galled trees with only one gall has the same exponential order 2.4833 as the number with no galls, exceeding it only in the subexponential term, 0.3910n12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.3910n<^>{\frac{1}{2}}$$\end{document} compared to 0.3188n-32\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.3188n<^>{-\frac{3}{2}}$$\end{document}. For a fixed number of leaves n, the number of galls g that produces the largest number of rooted binary unlabeled galled trees lies intermediate between the minimum of g=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g=0$$\end{document} and the maximum of g=Ln-12 RIGHT FLOOR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g=\lfloor \frac{n-1}{2} \rfloor $$\end{document}. We discuss implications in mathematical phylogenetics.
引用
收藏
页数:35
相关论文
共 50 条
  • [21] Beyond galled trees -: Decomposition and computation of galled networks
    Huson, Daniel H.
    Kloepper, Tobias H.
    RESEARCH IN COMPUTATIONAL MOLECULAR BIOLOGY, PROCEEDINGS, 2007, 4453 : 211 - +
  • [22] Comparison of Galled Trees
    Cardona, Gabriel
    Llabres, Merce
    Rossello, Francesc
    Valiente, Gabriel
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2011, 8 (02) : 410 - 427
  • [23] Enumeration of binary trees and universal types
    Knessl, C
    Szpankowski, W
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2005, 7 (01): : 313 - 400
  • [24] All galls are divided into three or more parts: recursive enumeration of labeled histories for galled trees
    Mathur, Shaili
    Rosenberg, Noah A. A.
    ALGORITHMS FOR MOLECULAR BIOLOGY, 2023, 18 (01)
  • [25] All galls are divided into three or more parts: recursive enumeration of labeled histories for galled trees
    Shaili Mathur
    Noah A. Rosenberg
    Algorithms for Molecular Biology, 18
  • [26] Combinatorial differential operators in: Faádi Bruno formula, enumeration of ballot paths, enriched rooted trees and increasing rooted trees
    Mendez, M. A.
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2024, 89 : 350 - 384
  • [27] Grammar-oriented enumeration of binary trees
    Xiang, LM
    Tang, CJ
    Ushijima, K
    COMPUTER JOURNAL, 1997, 40 (05): : 278 - 291
  • [28] Enumeration of binary trees compatible with a perfect phylogeny
    Julia A. Palacios
    Anand Bhaskar
    Filippo Disanto
    Noah A. Rosenberg
    Journal of Mathematical Biology, 2022, 84
  • [29] Enumeration of binary trees compatible with a perfect phylogeny
    Palacios, Julia A.
    Bhaskar, Anand
    Disanto, Filippo
    Rosenberg, Noah A.
    JOURNAL OF MATHEMATICAL BIOLOGY, 2022, 84 (06)
  • [30] ON THE TOTAL HEIGHTS OF RANDOM ROOTED BINARY-TREES
    TAKACS, L
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1994, 61 (02) : 155 - 166