Enumeration of Rooted Binary Unlabeled Galled Trees

被引:0
|
作者
Agranat-Tamir, Lily [1 ]
Mathur, Shaili [1 ]
Rosenberg, Noah A. [1 ]
机构
[1] Stanford Univ, Dept Biol, Stanford, CA 94305 USA
关键词
Galled trees; Phylogenetics; Unlabeled trees; PHYLOGENETIC NETWORKS; CHILD;
D O I
10.1007/s11538-024-01270-8
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Rooted binary galled trees generalize rooted binary trees to allow a restricted class of cycles, known as galls. We build upon the Wedderburn-Etherington enumeration of rooted binary unlabeled trees with n leaves to enumerate rooted binary unlabeled galled trees with n leaves, also enumerating rooted binary unlabeled galled trees with n leaves and g galls, 0 <= g <= Ln-12 RIGHT FLOOR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0 \leqslant g \leqslant \lfloor \frac{n-1}{2} \rfloor $$\end{document}. The enumerations rely on a recursive decomposition that considers subtrees descended from the nodes of a gall, adopting a restriction on galls that amounts to considering only the rooted binary normal unlabeled galled trees in our enumeration. We write an implicit expression for the generating function encoding the numbers of trees for all n. We show that the number of rooted binary unlabeled galled trees grows with 0.0779(4.8230n)n-32\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.0779(4.8230<^>n)n<^>{-\frac{3}{2}}$$\end{document}, exceeding the growth 0.3188(2.4833n)n-32\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.3188(2.4833<^>n)n<^>{-\frac{3}{2}}$$\end{document} of the number of rooted binary unlabeled trees without galls. However, the growth of the number of galled trees with only one gall has the same exponential order 2.4833 as the number with no galls, exceeding it only in the subexponential term, 0.3910n12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.3910n<^>{\frac{1}{2}}$$\end{document} compared to 0.3188n-32\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.3188n<^>{-\frac{3}{2}}$$\end{document}. For a fixed number of leaves n, the number of galls g that produces the largest number of rooted binary unlabeled galled trees lies intermediate between the minimum of g=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g=0$$\end{document} and the maximum of g=Ln-12 RIGHT FLOOR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g=\lfloor \frac{n-1}{2} \rfloor $$\end{document}. We discuss implications in mathematical phylogenetics.
引用
收藏
页数:35
相关论文
共 50 条
  • [31] HYBRIDIZATION NUMBER ON THREE ROOTED BINARY TREES IS EPT
    Van Iersel, Leo
    Kelk, Steven
    Lekic, Nela
    Whidden, Chris
    Zeh, Norbert
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2016, 30 (03) : 1607 - 1631
  • [32] Spectral Properties of Quantum Walks on Rooted Binary Trees
    Joye, Alain
    Marin, Laurent
    JOURNAL OF STATISTICAL PHYSICS, 2014, 155 (06) : 1249 - 1270
  • [33] A BIJECTION BETWEEN MATCHINGS AND ROOTED BINARY-TREES
    GROSSMAN, JW
    AMERICAN MATHEMATICAL MONTHLY, 1991, 98 (06): : 554 - 555
  • [34] Spectral Properties of Quantum Walks on Rooted Binary Trees
    Alain Joye
    Laurent Marin
    Journal of Statistical Physics, 2014, 155 : 1249 - 1270
  • [35] Algorithms for Combining Rooted Triplets into a Galled Phylogenetic Network
    Jansson, Jesper
    Nguyen, Nguyen Bao
    Sung, Wing-Kin
    PROCEEDINGS OF THE SIXTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2005, : 349 - 358
  • [36] Algorithms for combining rooted triplets into a galled phylogenetic network
    Jansson, J
    Nguyen, NB
    Sung, WK
    SIAM JOURNAL ON COMPUTING, 2006, 35 (05) : 1098 - 1121
  • [37] Asymptotic enumeration and distributional properties of galled networks
    Fuchs, Michael
    Yu, Guan-Ru
    Zhang, Louxin
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2022, 189
  • [38] A SHORTEST-PATH METRIC ON UNLABELED BINARY-TREES
    BONNIN, A
    PALLO, JM
    PATTERN RECOGNITION LETTERS, 1992, 13 (06) : 411 - 415
  • [39] REFINED ENUMERATION OF VERTICES AMONG ALL ROOTED ORDERED d-TREES
    Kim, Sangwook
    Seo, Seunghyun
    Shin, Heesung
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 56 (04) : 899 - 910
  • [40] Exchangeable and sampling-consistent distributions on rooted binary trees
    Hollering, Benjamin
    Sullivant, Seth
    JOURNAL OF APPLIED PROBABILITY, 2022, 59 (01) : 60 - 80