Enumeration of Rooted Binary Unlabeled Galled Trees

被引:0
|
作者
Agranat-Tamir, Lily [1 ]
Mathur, Shaili [1 ]
Rosenberg, Noah A. [1 ]
机构
[1] Stanford Univ, Dept Biol, Stanford, CA 94305 USA
关键词
Galled trees; Phylogenetics; Unlabeled trees; PHYLOGENETIC NETWORKS; CHILD;
D O I
10.1007/s11538-024-01270-8
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Rooted binary galled trees generalize rooted binary trees to allow a restricted class of cycles, known as galls. We build upon the Wedderburn-Etherington enumeration of rooted binary unlabeled trees with n leaves to enumerate rooted binary unlabeled galled trees with n leaves, also enumerating rooted binary unlabeled galled trees with n leaves and g galls, 0 <= g <= Ln-12 RIGHT FLOOR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0 \leqslant g \leqslant \lfloor \frac{n-1}{2} \rfloor $$\end{document}. The enumerations rely on a recursive decomposition that considers subtrees descended from the nodes of a gall, adopting a restriction on galls that amounts to considering only the rooted binary normal unlabeled galled trees in our enumeration. We write an implicit expression for the generating function encoding the numbers of trees for all n. We show that the number of rooted binary unlabeled galled trees grows with 0.0779(4.8230n)n-32\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.0779(4.8230<^>n)n<^>{-\frac{3}{2}}$$\end{document}, exceeding the growth 0.3188(2.4833n)n-32\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.3188(2.4833<^>n)n<^>{-\frac{3}{2}}$$\end{document} of the number of rooted binary unlabeled trees without galls. However, the growth of the number of galled trees with only one gall has the same exponential order 2.4833 as the number with no galls, exceeding it only in the subexponential term, 0.3910n12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.3910n<^>{\frac{1}{2}}$$\end{document} compared to 0.3188n-32\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.3188n<^>{-\frac{3}{2}}$$\end{document}. For a fixed number of leaves n, the number of galls g that produces the largest number of rooted binary unlabeled galled trees lies intermediate between the minimum of g=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g=0$$\end{document} and the maximum of g=Ln-12 RIGHT FLOOR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g=\lfloor \frac{n-1}{2} \rfloor $$\end{document}. We discuss implications in mathematical phylogenetics.
引用
收藏
页数:35
相关论文
共 50 条
  • [1] Enumeration of Rooted Binary Unlabeled Galled Trees
    Lily Agranat-Tamir
    Shaili Mathur
    Noah A. Rosenberg
    Bulletin of Mathematical Biology, 2024, 86
  • [2] On the Colijn-Plazzotta numbering scheme for unlabeled binary rooted trees
    Rosenberg, Noah A.
    DISCRETE APPLIED MATHEMATICS, 2021, 291 : 88 - 98
  • [3] Sackin indices for labeled and unlabeled classes of galled trees
    Fuchs, Michael
    Gittenberger, Bernhard
    JOURNAL OF MATHEMATICAL BIOLOGY, 2025, 90 (04)
  • [4] The shape of unlabeled rooted random trees
    Drmota, Michael
    Gittenberger, Bernhard
    EUROPEAN JOURNAL OF COMBINATORICS, 2010, 31 (08) : 2028 - 2063
  • [5] An Efficient Algorithm for the Rooted Triplet Distance Between Galled Trees
    Jansson, Jesper
    Rajaby, Ramesh
    Sung, Wing-Kin
    ALGORITHMS FOR COMPUTATIONAL BIOLOGY (ALCOB 2017), 2017, 10252 : 115 - 126
  • [6] An Efficient Algorithm for the Rooted Triplet Distance Between Galled Trees
    Jansson, Jesper
    Rajaby, Ramesh
    Sung, Wing-Kin
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2019, 26 (09) : 893 - 907
  • [7] COMPUTER ENUMERATION AND GENERATION OF TREES AND ROOTED TREES
    KNOP, JV
    MULLER, WR
    JERICEVIC, Z
    TRINAJSTIC, N
    JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 1981, 21 (02): : 91 - 99
  • [8] ENUMERATION OF ROOTED TREES WITH A HEIGHT DISTRIBUTION
    PRAEGER, CE
    SCHULTZ, P
    WORMALD, NC
    ARS COMBINATORIA, 1985, 19A (MAY) : 191 - 204
  • [9] ON THE BRANCH-SIZES OF ROOTED UNLABELED TREES
    MEIR, A
    MOON, JW
    ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 1989, 576 : 399 - 407
  • [10] Computing the rooted triplet distance between galled trees by counting triangles
    Jansson, Jesper
    Lingas, Andrzej
    JOURNAL OF DISCRETE ALGORITHMS, 2014, 25 : 66 - 78