Machine learning for photonics: from computing to communication

被引:0
|
作者
Da Ros, Francesco [1 ]
Cem, Ali [1 ]
Osadchuk, Yevhenii [1 ]
Jovanovic, Ognjen [1 ]
Zibar, Darko [1 ]
机构
[1] Tech Univ Denmark, Lyngby, Denmark
关键词
NN models; matrix multipliers; equalization;
D O I
10.1109/SUM57928.2023.10224400
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Neural networks are effective tools for learning direct and inverse models. Here, we review two specific applications of neural networks to photonics: (i) learning accurate direct models for optical matrix multipliers and (ii) inverse modeling for short-reach fiber communication systems, enabling signal equalization.
引用
收藏
页数:2
相关论文
共 50 条
  • [1] Quantum Computing and Machine Learning on an Integrated Photonics Platform
    Zhu, Huihui
    Lin, Hexiang
    Wu, Shaojun
    Luo, Wei
    Zhang, Hui
    Zhan, Yuancheng
    Wang, Xiaoting
    Liu, Aiqun
    Kwek, Leong Chuan
    INFORMATION, 2024, 15 (02)
  • [2] Machine Learning With Neuromorphic Photonics
    de Lima, Thomas Ferreira
    Peng, Hsuan-Tung
    Tait, Alexander N.
    Nahmias, Mitchell A.
    Miller, Heidi B.
    Shastri, Bhavin J.
    Prucnal, Paul R.
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2019, 37 (05) : 1515 - 1534
  • [3] Photonics for computing and computing for photonics
    Brunner, Daniel
    Marandi, Alireza
    Bogaerts, Wim
    Ozcan, Aydogan
    NANOPHOTONICS, 2020, 9 (13) : 4053 - 4054
  • [4] Machine learning and applications in ultrafast photonics
    Goëry Genty
    Lauri Salmela
    John M. Dudley
    Daniel Brunner
    Alexey Kokhanovskiy
    Sergei Kobtsev
    Sergei K. Turitsyn
    Nature Photonics, 2021, 15 : 91 - 101
  • [5] Machine learning and applications in ultrafast photonics
    Genty, Goery
    Salmela, Lauri
    Dudley, John M.
    Brunner, Daniel
    Kokhanovskiy, Alexey
    Kobtsev, Sergei
    Turitsyn, Sergei K.
    NATURE PHOTONICS, 2021, 15 (02) : 91 - 101
  • [6] Machine Learning for Integrated Quantum Photonics
    Kudyshev, Zhaxylyk A.
    Shalaev, Vladimir M.
    Boltasseva, Alexandra
    ACS PHOTONICS, 2021, 8 (01): : 34 - 46
  • [7] UbiNN: A Communication Efficient Framework for Distributed Machine Learning in Edge Computing
    Li, Ke
    Chen, Kexun
    Luo, Shouxi
    Zhang, Honghao
    Fan, Pingzhi
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2023, 10 (06): : 3368 - 3383
  • [8] Joint Communication and Computing Optimization for Hierarchical Machine Learning Tasks Distribution
    Yang, Bo
    Cao, Xuelin
    Li, Xiangfang
    Kroecker, Timothy
    Qian, Lijun
    2019 IEEE SYMPOSIUM ON COMPUTERS AND COMMUNICATIONS (ISCC), 2019, : 812 - 817
  • [9] SNAP: A Communication Efficient Distributed Machine Learning Framework for Edge Computing
    Zhao, Yangming
    Fan, Jingyuan
    Su, Lu
    Song, Tongyu
    Wang, Sheng
    Qiao, Chunming
    2020 IEEE 40TH INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS (ICDCS), 2020, : 584 - 594
  • [10] Embedded Sensors, Communication Technologies, Computing Platforms and Machine Learning for UAVs: A Review
    Wilson, A. N.
    Kumar, Abhinav
    Jha, Ajit
    Cenkeramaddi, Linga Reddy
    IEEE SENSORS JOURNAL, 2022, 22 (03) : 1807 - 1826