Inverse problem for the Atangana-Baleanu fractional differential equation

被引:8
|
作者
Ruhil, Santosh [1 ]
Malik, Muslim [1 ]
机构
[1] Indian Inst Technol Mandi, Sch Math & Stat Sci, Mandi 175005, India
来源
关键词
Inverse problems; fractional differential equations; Volterra integral equation; optimal control; Atangana-Baleanu fractional derivative; LYAPUNOV FUNCTIONS; EXISTENCE;
D O I
10.1515/jiip-2022-0025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this manuscript, we examine a fractional inverse problem of order 0 < rho < 1 in a Banach space, including the Atangana-Baleanu fractional derivative in the Caputo sense. We use an overdetermined condition on a mild solution to identify the parameter. The major strategies for determining the outcome are a direct approach using the Volterra integral equation for sufficiently regular data. For less regular data, an optimal control approach uses Euler-Lagrange (EL) equations for the fractional order control problem (FOCP) and a numerical approach for solving FOCP. At last, a numerical example is provided in the support of our results.
引用
收藏
页码:763 / 779
页数:17
相关论文
共 50 条
  • [41] Existence results of a nonlocal impulsive fractional stochastic differential systems with Atangana-Baleanu derivative
    Dhayal, Rajesh
    Nadeem, Mohd
    JOURNAL OF ANALYSIS, 2024,
  • [42] Real world applications of fractional models by Atangana-Baleanu fractional derivative
    Bas, Erdal
    Ozarslan, Ramazan
    CHAOS SOLITONS & FRACTALS, 2018, 116 : 121 - 125
  • [43] Nonlocal Hybrid Integro-Differential Equations Involving Atangana-Baleanu Fractional Operators
    Alshammari, Saleh
    Alshammari, Mohammad
    Abdo, Mohammed S.
    JOURNAL OF MATHEMATICS, 2023, 2023
  • [44] Existence and data dependence results for fractional differential equations involving atangana-baleanu derivative
    Sutar, Sagar T.
    Kucche, Kishor D.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2022, 71 (02) : 647 - 663
  • [45] Results on Impulsive Fractional Integro-Differential Equations Involving Atangana-Baleanu Derivative
    Karthikeyan, Kulandhivel
    Ege, Ozgur
    Karthikeyan, Panjayan
    FILOMAT, 2022, 36 (13) : 4617 - 4627
  • [46] Atangana-Baleanu Semilinear Fractional Differential Inclusions With Infinite Delay: Existence and Approximate Controllability
    Williams, W. Kavitha
    Vijayakumar, V.
    Nisar, Kottakkaran Sooppy
    Shukla, Anurag
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2023, 18 (02):
  • [47] The averaging principle of Atangana-Baleanu fractional stochastic integro-differential systems with delay
    Dhayal, Rajesh
    Zhu, Quanxin
    JOURNAL OF ANALYSIS, 2024, 32 (06): : 3565 - 3576
  • [48] A creep constitutive model based on Atangana-Baleanu fractional derivative
    Deng, Huilin
    Zhou, Hongwei
    Wei, Qing
    Li, Lifeng
    Jia, Wenhao
    MECHANICS OF TIME-DEPENDENT MATERIALS, 2023, 27 (04) : 1171 - 1186
  • [49] Modelling the spread of Ebola virus with Atangana-Baleanu fractional operators
    Koca, Ilknur
    EUROPEAN PHYSICAL JOURNAL PLUS, 2018, 133 (03):
  • [50] New idea of Atangana-Baleanu time-fractional derivative to advection-diffusion equation
    Tlili, Iskander
    Shah, Nehad Ali
    Ullah, Saif
    Manzoor, Humera
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (03) : 2521 - 2531