Inverse problem for the Atangana-Baleanu fractional differential equation

被引:8
|
作者
Ruhil, Santosh [1 ]
Malik, Muslim [1 ]
机构
[1] Indian Inst Technol Mandi, Sch Math & Stat Sci, Mandi 175005, India
来源
关键词
Inverse problems; fractional differential equations; Volterra integral equation; optimal control; Atangana-Baleanu fractional derivative; LYAPUNOV FUNCTIONS; EXISTENCE;
D O I
10.1515/jiip-2022-0025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this manuscript, we examine a fractional inverse problem of order 0 < rho < 1 in a Banach space, including the Atangana-Baleanu fractional derivative in the Caputo sense. We use an overdetermined condition on a mild solution to identify the parameter. The major strategies for determining the outcome are a direct approach using the Volterra integral equation for sufficiently regular data. For less regular data, an optimal control approach uses Euler-Lagrange (EL) equations for the fractional order control problem (FOCP) and a numerical approach for solving FOCP. At last, a numerical example is provided in the support of our results.
引用
收藏
页码:763 / 779
页数:17
相关论文
共 50 条
  • [21] Comparison of Caputo and Atangana-Baleanu fractional derivatives for the pseudohyperbolic telegraph differential equations
    Modanli, Mahmut
    PRAMANA-JOURNAL OF PHYSICS, 2021, 96 (01):
  • [22] Fractional Herglotz variational problems with Atangana-Baleanu fractional derivatives
    Zhang, Jianke
    Yin, Luyang
    Zhou, Chang
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [23] Analysis of a fractional eigenvalue problem involving Atangana-Baleanu fractional derivative: A maximum principle and applications
    Al-Refai, Mohammed
    Hajji, Mohamed Ali
    CHAOS, 2019, 29 (01)
  • [24] Determine unknown source problem for time fractional pseudo-parabolic equation with Atangana-Baleanu Caputo fractional derivative
    Phuong, Nguyen Duc
    Long, Le Dinh
    Kumar, Devender
    Binh, Ho Duy
    AIMS MATHEMATICS, 2022, 7 (09): : 16147 - 16170
  • [25] ANALYTICAL TREATMENTS TO SYSTEMS OF FRACTIONAL DIFFERENTIAL EQUATIONS WITH MODIFIED ATANGANA-BALEANU DERIVATIVE
    Al-Refai, Mohammed
    Syam, Muhammed I.
    Baleanu, Dumitru
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2023, 31 (10)
  • [26] A new financial chaotic model in Atangana-Baleanu stochastic fractional differential equations
    Liping, Chen
    Khan, Muhammad Altaf
    Atangana, Abdon
    Kumar, Sunil
    ALEXANDRIA ENGINEERING JOURNAL, 2021, 60 (06) : 5193 - 5204
  • [27] A bibliometric analysis of Atangana-Baleanu operators in fractional calculus
    Templeton, Alexander
    ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (04) : 2733 - 2738
  • [29] A Fractional SAIDR Model in the Frame of Atangana-Baleanu Derivative
    Ucar, Esmehan
    Ucar, Sumeyra
    Evirgen, Firat
    Ozdemir, Necati
    FRACTAL AND FRACTIONAL, 2021, 5 (02)
  • [30] Freelance Model with Atangana-Baleanu Caputo Fractional Derivative
    Khan, Fareeha Sami
    Khalid, M.
    Al-moneef, Areej A.
    Ali, Ali Hasan
    Bazighifan, Omar
    SYMMETRY-BASEL, 2022, 14 (11):