Flexible few-shot class-incremental learning with prototype container

被引:2
|
作者
Xu, Xinlei [1 ,2 ]
Wang, Zhe [1 ,2 ]
Fu, Zhiling [1 ,2 ]
Guo, Wei [1 ,2 ]
Chi, Ziqiu [1 ,2 ]
Li, Dongdong [1 ,2 ]
机构
[1] East China Univ Sci & Technol, Key Lab Smart Mfg Energy Chem Proc, Minist Educ, Shanghai 200237, Peoples R China
[2] East China Univ Sci & Technol, Dept Comp Sci & Engn, Shanghai 200237, Peoples R China
来源
NEURAL COMPUTING & APPLICATIONS | 2023年 / 35卷 / 15期
关键词
Few-shot class-incremental learning; Few shot learning; Incremental learning; INFORMATION;
D O I
10.1007/s00521-023-08272-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the few-shot class- incremental learning, new class samples are utilized to learn the characteristics of new classes, while old class exemplars are used to avoid old knowledge forgetting. The limited number of new class samples is more likely to cause overfitting during incremental training. Moreover, mass stored old exemplars mean large storage space consumption. To solve the above difficulties, in this paper we propose a novel flexible few-shot class-incremental framework to make the incremental process efficient and convenient. We enhance the expression ability of extracted features through multistage pre-training. Then, we set up a prototype container to store each class prototype to retain old knowledge. When new classes flow in, we calculate the new class prototypes and update the prototype container. Finally, we get the prediction result through similarity weighting. The entire framework only need to train the base class classifier and does not require further training during the incremental process. It avoids the overfitting of novel classes and saves time for further training. Besides, storing prototypes can save more storage space than original image data. Overall, the entire framework has the advantage of flexibility. We conduct extensive experiments on three standard few-shot class-incremental datasets and achieve state-of-the-art results. Especially, to verify the flexibility of the framework, we discuss the special federated fewshot class-incremental scenarios in addition. No further training and less storage consumption provide the possibility for applications in more complex scenarios.
引用
收藏
页码:10875 / 10889
页数:15
相关论文
共 50 条
  • [31] A Few-Shot Class-Incremental Learning Method for Network Intrusion Detection
    Du, Lei
    Gu, Zhaoquan
    Wang, Ye
    Wang, Le
    Jia, Yan
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2024, 21 (02): : 2389 - 2401
  • [32] Few-Shot Class-Incremental Learning for Classification and Object Detection: A Survey
    Zhang, Jinghua
    Liu, Li
    Silven, Olli
    Pietikainen, Matti
    Hu, Dewen
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2025, 47 (04) : 2924 - 2945
  • [33] Few-Shot Class-Incremental Learning with Meta-Learned Class Structures
    Zheng, Guangtao
    Zhang, Aidong
    21ST IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS ICDMW 2021, 2021, : 421 - 430
  • [34] Few-Shot Class-Incremental Learning for Network Intrusion Detection Systems
    Di Monda, Davide
    Montieri, Antonio
    Persico, Valerio
    Voria, Pasquale
    De Ieso, Matteo
    Pescape, Antonio
    IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, 2024, 5 : 6736 - 6757
  • [35] Improved Continually Evolved Classifiers for Few-Shot Class-Incremental Learning
    Wang, Ye
    Zhao, Guoshuai
    Qian, Xueming
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (02) : 1123 - 1134
  • [36] Incrementally Learned Angular Representations for Few-Shot Class-Incremental Learning
    Yoon, In-Ug
    Kim, Jong-Hwan
    IEEE ACCESS, 2023, 11 : 140626 - 140635
  • [37] A cognition-driven framework for few-shot class-incremental learning
    Wang, Xuan
    Ji, Zhong
    Pang, Yanwei
    Yu, Yunlong
    NEUROCOMPUTING, 2024, 600
  • [38] Few-Shot Class-Incremental Learning via Relation Knowledge Distillation
    Dong, Songlin
    Hong, Xiaopeng
    Tao, Xiaoyu
    Chang, Xinyuan
    Wei, Xing
    Gong, Yihong
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 1255 - 1263
  • [39] Causal Inference-based Few-Shot Class-Incremental Learning
    Zhou, Weiwei
    Xiao, Guoqiang
    Lew, Michael S.
    Wu, Song
    PROCEEDINGS OF THE 4TH ANNUAL ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, ICMR 2024, 2024, : 478 - 487
  • [40] Overcomplete-to-sparse representation learning for few-shot class-incremental learning
    Fu, Mengying
    Liu, Binghao
    Ma, Tianren
    Ye, Qixiang
    MULTIMEDIA SYSTEMS, 2024, 30 (02)