Few-Shot Class-Incremental Learning via Relation Knowledge Distillation

被引:0
|
作者
Dong, Songlin [1 ]
Hong, Xiaopeng [2 ]
Tao, Xiaoyu [1 ]
Chang, Xinyuan [3 ]
Wei, Xing [3 ]
Gong, Yihong [3 ]
机构
[1] Xi An Jiao Tong Univ, Coll Artificial Intelligence, Xian, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Cyber Sci & Engn, Xian, Peoples R China
[3] Xi An Jiao Tong Univ, Sch Software Engn, Xian, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we focus on the challenging few-shot class-incremental learning (FSCIL) problem, which requires to transfer knowledge from old tasks to new ones and solves catastrophic forgetting. We propose the exemplar relation distillation incremental learning framework to balance the tasks of old-knowledge preserving and new-knowledge adaptation. First, we construct an exemplar relation graph to represent the knowledge learned by the original network and update gradually for new tasks learning. Then an exemplar relation loss function for discovering the relation knowledge between different classes is introduced to learn and transfer the structural information in relation graph. A large number of experiments demonstrate that relation knowledge does exist in the exemplars and our approach outperforms other state-of-the-art class-incremental learning methods on the CIFAR100, minilmageNet, and CUB200 datasets.
引用
收藏
页码:1255 / 1263
页数:9
相关论文
共 50 条
  • [1] Semantic-aware Knowledge Distillation for Few-Shot Class-Incremental Learning
    Cheraghian, Ali
    Rahman, Shafin
    Fang, Pengfei
    Roy, Soumava Kumar
    Petersson, Lars
    Harandi, Mehrtash
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 2534 - 2543
  • [2] Few-Shot Class-Incremental Learning via Class-Aware Bilateral Distillation
    Zhao, Linglan
    Lu, Jing
    Xu, Yunlu
    Cheng, Zhanzhan
    Guo, Dashan
    Niu, Yi
    Fang, Xiangzhong
    [J]. 2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 11838 - 11847
  • [3] A survey on few-shot class-incremental learning
    Tian, Songsong
    Li, Lusi
    Li, Weijun
    Ran, Hang
    Ning, Xin
    Tiwari, Prayag
    [J]. NEURAL NETWORKS, 2024, 169 : 307 - 324
  • [4] A survey on few-shot class-incremental learning
    Tian, Songsong
    Li, Lusi
    Li, Weijun
    Ran, Hang
    Ning, Xin
    Tiwari, Prayag
    [J]. Neural Networks, 2024, 169 : 307 - 324
  • [5] Graph Few-shot Class-incremental Learning
    Tan, Zhen
    Ding, Kaize
    Guo, Ruocheng
    Liu, Huan
    [J]. WSDM'22: PROCEEDINGS OF THE FIFTEENTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, 2022, : 987 - 996
  • [6] Constrained Few-shot Class-incremental Learning
    Hersche, Michael
    Karunaratne, Geethan
    Cherubini, Giovanni
    Benini, Luca
    Sebastian, Abu
    Rahimi, Abbas
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 9047 - 9057
  • [7] Few-shot class incremental learning via prompt transfer and knowledge distillation
    Akmel, Feidu
    Meng, Fanman
    Liu, Mingyu
    Zhang, Runtong
    Teka, Asebe
    Lemuye, Elias
    [J]. IMAGE AND VISION COMPUTING, 2024, 151
  • [8] Knowledge Representation by Generic Models for Few-Shot Class-Incremental Learning
    Chen, Xiaodong
    Jiang, Weijie
    Huang, Zhiyong
    Su, Jiangwen
    Yu, Yuanlong
    [J]. ADVANCES IN NATURAL COMPUTATION, FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, ICNC-FSKD 2022, 2023, 153 : 1237 - 1247
  • [9] Learning to complement: Relation complementation network for few-shot class-incremental learning
    Wang, Ye
    Wang, Yaxiong
    Zhao, Guoshuai
    Qian, Xueming
    [J]. KNOWLEDGE-BASED SYSTEMS, 2023, 282
  • [10] Uncertainty-Guided Semi-Supervised Few-Shot Class-Incremental Learning With Knowledge Distillation
    Cui, Yawen
    Deng, Wanxia
    Xu, Xin
    Liu, Zhen
    Liu, Zhong
    Pietikainen, Matti
    Liu, Li
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 6422 - 6435