Graph Few-shot Class-incremental Learning

被引:18
|
作者
Tan, Zhen [1 ]
Ding, Kaize [1 ]
Guo, Ruocheng [2 ]
Liu, Huan [1 ]
机构
[1] Arizona State Univ, Tempe, AZ 85287 USA
[2] City Univ Hong Kong, Hong Kong, Peoples R China
关键词
Graph Neural Networks; Incremental Learning; Few-shot Learning;
D O I
10.1145/3488560.3498455
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The ability to incrementally learn new classes is vital to all real-world artificial intelligence systems. A large portion of high-impact applications like social media, recommendation systems, E-commerce platforms, etc. can be represented by graph models. In this paper, we investigate the challenging yet practical problem, Graph Few-shot Class-incremental (Graph FCL) problem, where the graph model is tasked to classify both newly encountered classes and previously learned classes. Towards that purpose, we put forward a Graph Pseudo Incremental Learning paradigm by sampling tasks recurrently from the base classes, so as to produce an arbitrary number of training episodes for our model to practice the incremental learning skill. Furthermore, we design a Hierarchical-Attention-based Graph Meta-learning framework, HAG-Meta from an optimization perspective. We present a task-sensitive regularizer calculated from task-level attention and node class prototypes to mitigate overfitting onto either novel or base classes. To employ the topological knowledge, we add a node-level attention module to adjust the prototype representation. Our model not only achieves greater stability of old knowledge consolidation, but also acquires advantageous adaptability to new knowledge with very limited data samples. Extensive experiments on three real-world datasets, including Amazon-clothing, Reddit, and DBLP, show that our framework demonstrates remarkable advantages in comparison with the baseline and other related state-of-the-art methods.
引用
收藏
页码:987 / 996
页数:10
相关论文
共 50 条
  • [1] A survey on few-shot class-incremental learning
    Tian, Songsong
    Li, Lusi
    Li, Weijun
    Ran, Hang
    Ning, Xin
    Tiwari, Prayag
    [J]. NEURAL NETWORKS, 2024, 169 : 307 - 324
  • [2] A survey on few-shot class-incremental learning
    Tian, Songsong
    Li, Lusi
    Li, Weijun
    Ran, Hang
    Ning, Xin
    Tiwari, Prayag
    [J]. Neural Networks, 2024, 169 : 307 - 324
  • [3] Constrained Few-shot Class-incremental Learning
    Hersche, Michael
    Karunaratne, Geethan
    Cherubini, Giovanni
    Benini, Luca
    Sebastian, Abu
    Rahimi, Abbas
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 9047 - 9057
  • [4] ACTIVE CLASS SELECTION FOR FEW-SHOT CLASS-INCREMENTAL LEARNING
    McClurg, Christopher
    Ayub, Ali
    Tyagi, Harsh
    Rajtmajer, Sarah M.
    Wagner, Alan R.
    [J]. CONFERENCE ON LIFELONG LEARNING AGENTS, VOL 232, 2023, 232 : 811 - 827
  • [5] Forward Compatible Few-Shot Class-Incremental Learning
    Zhou, Da-Wei
    Wang, Fu-Yun
    Ye, Han-Jia
    Ma, Liang
    Pu, Shiliang
    Zhan, De-Chuan
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 9036 - 9046
  • [6] Geometer: Graph Few-Shot Class-Incremental Learning via Prototype Representation
    Lu, Bin
    Gan, Xiaoying
    Yang, Lina
    Zhang, Weinan
    Fu, Luoyi
    Wang, Xinbing
    [J]. PROCEEDINGS OF THE 28TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2022, 2022, : 1152 - 1161
  • [7] Filter Bank Networks for Few-Shot Class-Incremental Learning
    Zhou, Yanzhao
    Liu, Binghao
    Liu, Yiran
    Jiao, Jianbin
    [J]. CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2023, 137 (01): : 647 - 668
  • [8] Jointly Optimized Classifiers for Few-Shot Class-Incremental Learning
    Fu, Sichao
    Peng, Qinmu
    Wang, Xiaorui
    He, Yang
    Qiu, Wenhao
    Zou, Bin
    Xu, Duanquan
    Jing, Xiao-Yuan
    You, Xinge
    [J]. IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024, : 1 - 11
  • [9] Learnable Distribution Calibration for Few-Shot Class-Incremental Learning
    Liu, Binghao
    Yang, Boyu
    Xie, Lingxi
    Wang, Ren
    Tian, Qi
    Ye, Qixiang
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (10) : 12699 - 12706
  • [10] Model Attention Expansion for Few-Shot Class-Incremental Learning
    Wang, Xuan
    Ji, Zhong
    Yu, Yunlong
    Pang, Yanwei
    Han, Jungong
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 4419 - 4431