Incrementally Learned Angular Representations for Few-Shot Class-Incremental Learning

被引:0
|
作者
Yoon, In-Ug [1 ]
Kim, Jong-Hwan [1 ]
机构
[1] Korea Adv Inst Sci & Technol KAIST, Sch Elect Engn, Daejeon 34141, South Korea
关键词
Classification algorithms; Class-incremental learning; few-shot learning; few-shot class-incremental learning; image classification;
D O I
10.1109/ACCESS.2023.3341500
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The main challenge of FSCIL is the trade-off between underfitting to a new session task and preventing forgetting the knowledge for earlier sessions. In this paper, we reveal that the angular space occupied by the features within the embedded area is relatively narrow. Consequently, after the base session training with the converged feature extractor, adding features of new classes easily overlaps with the previously occupied space of previous classes. Furthermore, in contrast to the base session classes, whose features are relatively well aggregated, the features of new session classes are dispersed over large regions. Thus, we propose the Incrementally Learned Angular Representation (ILAR) learning structure to address these issues. During the base session, ILAR attempts to increase the marginal spacing between the distributions of features for each class. In incremental sessions, modifications of features and classifiers corresponding to the previous session classes are limited to preserve the past knowledge while the features of new classes are readjusted. Furthermore, we generate additional features according to the statistics learned from the base session to reduce the variance caused by data shortage. Experiments proceeded on three popular benchmark datasets, including CIFAR100, miniImageNet, and CUB200. We demonstrate that the proposed method achieves state-of-the-art performances by effectively enhancing the new session classification ability while preserving the knowledge of the past sessions.
引用
收藏
页码:140626 / 140635
页数:10
相关论文
共 50 条
  • [1] Few-Shot Class-Incremental Learning with Meta-Learned Class Structures
    Zheng, Guangtao
    Zhang, Aidong
    21ST IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS ICDMW 2021, 2021, : 421 - 430
  • [2] A survey on few-shot class-incremental learning
    Tian, Songsong
    Li, Lusi
    Li, Weijun
    Ran, Hang
    Ning, Xin
    Tiwari, Prayag
    NEURAL NETWORKS, 2024, 169 : 307 - 324
  • [3] A survey on few-shot class-incremental learning
    Tian, Songsong
    Li, Lusi
    Li, Weijun
    Ran, Hang
    Ning, Xin
    Tiwari, Prayag
    Neural Networks, 2024, 169 : 307 - 324
  • [4] Graph Few-shot Class-incremental Learning
    Tan, Zhen
    Ding, Kaize
    Guo, Ruocheng
    Liu, Huan
    WSDM'22: PROCEEDINGS OF THE FIFTEENTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, 2022, : 987 - 996
  • [5] Constrained Few-shot Class-incremental Learning
    Hersche, Michael
    Karunaratne, Geethan
    Cherubini, Giovanni
    Benini, Luca
    Sebastian, Abu
    Rahimi, Abbas
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 9047 - 9057
  • [6] ACTIVE CLASS SELECTION FOR FEW-SHOT CLASS-INCREMENTAL LEARNING
    McClurg, Christopher
    Ayub, Ali
    Tyagi, Harsh
    Rajtmajer, Sarah M.
    Wagner, Alan R.
    CONFERENCE ON LIFELONG LEARNING AGENTS, VOL 232, 2023, 232 : 811 - 827
  • [7] Forward Compatible Few-Shot Class-Incremental Learning
    Zhou, Da-Wei
    Wang, Fu-Yun
    Ye, Han-Jia
    Ma, Liang
    Pu, Shiliang
    Zhan, De-Chuan
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 9036 - 9046
  • [8] Filter Bank Networks for Few-Shot Class-Incremental Learning
    Zhou, Yanzhao
    Liu, Binghao
    Liu, Yiran
    Jiao, Jianbin
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2023, 137 (01): : 647 - 668
  • [9] Jointly Optimized Classifiers for Few-Shot Class-Incremental Learning
    Fu, Sichao
    Peng, Qinmu
    Wang, Xiaorui
    He, Yang
    Qiu, Wenhao
    Zou, Bin
    Xu, Duanquan
    Jing, Xiao-Yuan
    You, Xinge
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024, 8 (05): : 1 - 11
  • [10] Learnable Distribution Calibration for Few-Shot Class-Incremental Learning
    Liu, Binghao
    Yang, Boyu
    Xie, Lingxi
    Wang, Ren
    Tian, Qi
    Ye, Qixiang
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (10) : 12699 - 12706