Base Station Dataset-Assisted Broadband Over-the-Air Aggregation for Communication-Efficient Federated Learning

被引:3
|
作者
Hong, Jun-Pyo [1 ]
Park, Sangjun [2 ,3 ]
Choi, Wan [4 ]
机构
[1] Pukyong Natl Univ, Dept Informat & Commun Engn, Busan 48513, South Korea
[2] Korea Adv Inst Sci & Technol, Sch Elect Engn, Daejeon 34141, South Korea
[3] Seoul Natl Univ, Inst New Media & Commun, Seoul 08826, South Korea
[4] Seoul Natl Univ, Inst New Media & Commun, Dept Elect & Comp Engn, Seoul 08826, South Korea
基金
新加坡国家研究基金会;
关键词
Convergence; Power control; Training; Distortion; Data models; Computational modeling; Broadband communication; Federated learning; over-the-air aggregation; dataset of base station; optimized power control; compressed update report; MULTIPLE-ACCESS; POWER-CONTROL; CONVERGENCE; ALLOCATION;
D O I
10.1109/TWC.2023.3249252
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes an over-the-air aggregation framework for federated learning (FL) in broadband wireless networks where not only edge devices but also a base station (BS) has its own local dataset. The proposed framework leverages the BS dataset to improve communication efficiency of FL by reducing the number of channel uses required for the model convergence as well as avoiding the signaling overhead incurred by power scale coordination among edge devices. We analyze the convergence to a stationary point without convexity assumption on the objective function. The analysis result reveals that the utilization of BS dataset improves the convergence rate and the update distortion caused by the limited power budget is a crucial factor hindering the model convergence. To facilitate the convergence, we develop an optimized power control method by solving the distortion minimization problem without assumptions on power scale coordination and global CSI at BS. Our simulation results validate that BS dataset is beneficial to reducing the number of channel uses for the model convergence and the developed power control method outperforms the conventional method in terms of both convergence rate and converged test accuracy. Furthermore, we identify some scenarios where the compression of local update can be helpful to reduce communication resources for model training.
引用
收藏
页码:7259 / 7272
页数:14
相关论文
共 50 条
  • [21] Graph-Assisted Communication-Efficient Ensemble Federated Learning
    Ghari, Pouya M.
    Shen, Yanning
    2022 30TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2022), 2022, : 737 - 741
  • [22] Over-the-Air Computation Assisted Hierarchical Personalized Federated Learning
    Zhou, Fangtong
    Wang, Zhibin
    Luo, Xiliang
    Zhou, Yong
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 5940 - 5945
  • [23] IRS-Assisted Digital Over-the-Air Federated Learning
    Pan, Yudi
    Wang, Zhibin
    Wu, Liantao
    Zhou, Yong
    IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 3276 - 3281
  • [24] Communication-Efficient Federated Multitask Learning Over Wireless Networks
    Ma, Haoyu
    Guo, Huayan
    Lau, Vincent K. N.
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (01) : 609 - 624
  • [25] Broadband Digital Over-the-Air Computation for Wireless Federated Edge Learning
    You, Lizhao
    Zhao, Xinbo
    Cao, Rui
    Shao, Yulin
    Fu, Liqun
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (05) : 5212 - 5228
  • [26] Broadband Digital Over-the-Air Computation for Asynchronous Federated Edge Learning
    Zhao, Xinbo
    You, Lizhao
    Rui Cao
    Shao, Yulin
    Fu, Liqun
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 5359 - 5364
  • [27] Time-Correlated Sparsification for Efficient Over-the-Air Model Aggregation in Wireless Federated Learning
    Sun, Yuxuan
    Zhou, Sheng
    Niu, Zhisheng
    Gunduz, Deniz
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 3388 - 3393
  • [28] Communication-Efficient and Privacy-Preserving Verifiable Aggregation for Federated Learning
    Peng, Kaixin
    Shen, Xiaoying
    Gao, Le
    Wang, Baocang
    Lu, Yichao
    ENTROPY, 2023, 25 (08)
  • [29] Communication-Efficient and Privacy-Preserving Aggregation in Federated Learning With Adaptability
    Sun, Xuehua
    Yuan, Zengsen
    Kong, Xianguang
    Xue, Liang
    He, Lang
    Lin, Ying
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (15): : 26430 - 26443
  • [30] Federated Learning With Over-the-Air Aggregation Over Time-Varying Channels
    Tegin, Busra
    Duman, Tolga M.
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2023, 22 (08) : 5671 - 5684