MULTIPLE SOLUTIONS FOR NONHOMOGENEOUS QUASILINEAR SCHRoDINGER-POISSON SYSTEM

被引:1
|
作者
Huang, Lanxin [1 ]
Su, Jiabao [1 ]
机构
[1] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Nonhomogeneous quasilinear Schrodinger-Poisson system; vari-ational methods; multiple solutions; GROUND-STATE SOLUTIONS; SOLITARY WAVES; ELLIPTIC-EQUATIONS; MAXWELL; EXISTENCE;
D O I
10.11948/20220404
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the nonhomogeneous quasilinear Schrodinger-Poisson system { - increment pu + TuTp-2u + & lambda;& phi;TuTp-2u = TuTq-2u + h(x) in R3, - increment & phi; = TuTp in R3, where 1 < p < 3, p < q < p* = 3p 3-p , increment pu = div(T backward difference uTp-2 backward difference u), & lambda; > 0 and h = 0. Under suitable assumptions on h, the Ekeland's variational principle and the mountain pass theorem are applied to establish the existence of mul-tiple solutions for this system. To the best of our knowledge, this paper is one of the first contributions to the study of the nonhomogeneous quasilinear Schrodinger-Poisson system.
引用
收藏
页码:1597 / 1612
页数:16
相关论文
共 50 条
  • [31] Multiple positive solutions for a Schrodinger-Poisson system with critical and supercritical growths
    Lei, J.
    Suo, H.
    IZVESTIYA MATHEMATICS, 2023, 87 (01) : 29 - 44
  • [32] L(2) solutions to the Schrodinger-Poisson system
    Castella, F
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1996, 323 (12): : 1243 - 1248
  • [33] Solutions of a Schrodinger-Poisson system with combined nonlinearities
    Sun, Mingzheng
    Su, Jiabao
    Zhao, Leiga
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 442 (02) : 385 - 403
  • [34] POSITIVE SOLUTIONS FOR A NONLINEAR SCHRODINGER-POISSON SYSTEM
    Wang, Chunhua
    Yang, Jing
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (11) : 5461 - 5504
  • [35] MULTIPLE SOLUTIONS FOR THE SCHRODINGER-POISSON EQUATION WITH A GENERAL NONLINEARITY
    Jiang, Yongsheng
    Wei, Na
    Wu, Yonghong
    ACTA MATHEMATICA SCIENTIA, 2021, 41 (03) : 703 - 711
  • [36] Existence of nontrivial solutions for a quasilinear Schrodinger-Poisson system in R3 with periodic potentials
    Wei, Chongqing
    Li, Anran
    Zhao, Leiga
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2023, (48) : 1 - 15
  • [37] Multiple small solutions for some Schrodinger-Poisson systems
    Zhang, Qingye
    Xu, Bin
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 117 : 200 - 210
  • [38] Multiple solutions for a nonlinear Schrodinger-Poisson system with sign-changing potential
    Liu, Hongliang
    Chen, Haibo
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 71 (07) : 1405 - 1416
  • [39] Multiple Solitary Wave Solutions for Nonhomogeneous Quasilinear Schrodinger Equations
    Huang, Wentao
    Jin, Qingfei
    Wang, Li
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2019, 20 (01) : 41 - 50
  • [40] Multiple normalized solutions for the planar Schrodinger-Poisson system with critical exponential growth
    Chen, Sitong
    Radulescu, Vicentiu D.
    Tang, Xianhua
    MATHEMATISCHE ZEITSCHRIFT, 2024, 306 (03)