L(2) solutions to the Schrodinger-Poisson system

被引:0
|
作者
Castella, F
机构
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We solve a system of infinitely many coupled Schrodinger equations with self-consistent Coulomb potential for an initial data which is only L(2). For this purpose, we establish Strichartz' type inequalities in the framework of vector-valued wave functions (density matrices). Also, several smoothing effects are shown, which we compare with the Vlasov-Poisson System, semi-classical limit of the Schrodinger-Poisson System.
引用
收藏
页码:1243 / 1248
页数:6
相关论文
共 50 条
  • [1] Global Solutions to the L2-Critical Schrodinger-Poisson System
    Avramska, S.
    Venkov, G. P.
    APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS '34, 2008, 1067 : 341 - 351
  • [2] Solutions of a Schrodinger-Poisson system with combined nonlinearities
    Sun, Mingzheng
    Su, Jiabao
    Zhao, Leiga
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 442 (02) : 385 - 403
  • [3] POSITIVE SOLUTIONS FOR A NONLINEAR SCHRODINGER-POISSON SYSTEM
    Wang, Chunhua
    Yang, Jing
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (11) : 5461 - 5504
  • [4] Positive solutions for a nonhomogeneous Schrodinger-Poisson system
    Zhang, Jing
    Niu, Rui
    Han, Xiumei
    ADVANCES IN NONLINEAR ANALYSIS, 2022, 11 (01) : 1201 - 1222
  • [5] Multiple solutions for a quasilinear Schrodinger-Poisson system
    Zhang, Jing
    BOUNDARY VALUE PROBLEMS, 2021, 2021 (01)
  • [6] On the existence of solutions for nonhomogeneous Schrodinger-Poisson system
    Wang, Lixia
    Ma, Shiwang
    Wang, Xiaoming
    BOUNDARY VALUE PROBLEMS, 2016,
  • [7] MULTIPLE SOLUTIONS FOR NONHOMOGENEOUS QUASILINEAR SCHRoDINGER-POISSON SYSTEM
    Huang, Lanxin
    Su, Jiabao
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2023, 13 (03): : 1597 - 1612
  • [8] Infinitely many positive solutions for a Schrodinger-Poisson system
    d'Avenia, Pietro
    Pomponio, Alessio
    Vaira, Giusi
    APPLIED MATHEMATICS LETTERS, 2011, 24 (05) : 661 - 664
  • [9] The existence and the concentration behavior of normalized solutions for the L2-critical Schrodinger-Poisson system
    Ye, Hongyu
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (02) : 266 - 280
  • [10] Infinitely many positive solutions for a Schrodinger-Poisson system
    d'Avenia, Pietro
    Pomponio, Alessio
    Vaira, Giusi
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (16) : 5705 - 5721