MULTIPLE SOLUTIONS FOR NONHOMOGENEOUS QUASILINEAR SCHRoDINGER-POISSON SYSTEM

被引:1
|
作者
Huang, Lanxin [1 ]
Su, Jiabao [1 ]
机构
[1] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Nonhomogeneous quasilinear Schrodinger-Poisson system; vari-ational methods; multiple solutions; GROUND-STATE SOLUTIONS; SOLITARY WAVES; ELLIPTIC-EQUATIONS; MAXWELL; EXISTENCE;
D O I
10.11948/20220404
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the nonhomogeneous quasilinear Schrodinger-Poisson system { - increment pu + TuTp-2u + & lambda;& phi;TuTp-2u = TuTq-2u + h(x) in R3, - increment & phi; = TuTp in R3, where 1 < p < 3, p < q < p* = 3p 3-p , increment pu = div(T backward difference uTp-2 backward difference u), & lambda; > 0 and h = 0. Under suitable assumptions on h, the Ekeland's variational principle and the mountain pass theorem are applied to establish the existence of mul-tiple solutions for this system. To the best of our knowledge, this paper is one of the first contributions to the study of the nonhomogeneous quasilinear Schrodinger-Poisson system.
引用
收藏
页码:1597 / 1612
页数:16
相关论文
共 50 条
  • [1] Multiple solutions for a quasilinear Schrodinger-Poisson system
    Zhang, Jing
    BOUNDARY VALUE PROBLEMS, 2021, 2021 (01)
  • [2] Existence of multiple positive solutions to nonhomogeneous Schrodinger-Poisson system
    Zhang, Qi
    Li, Fuyi
    Liang, Zhanping
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 259 : 353 - 363
  • [3] MULTIPLE SOLUTIONS FOR A NONHOMOGENEOUS SCHRODINGER-POISSON SYSTEM WITH CRITICAL EXPONENT
    Zhu, Li-Jun
    Liao, Jia-Feng
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2022, 12 (05): : 1702 - 1712
  • [4] Positive solutions for a nonhomogeneous Schrodinger-Poisson system
    Zhang, Jing
    Niu, Rui
    Han, Xiumei
    ADVANCES IN NONLINEAR ANALYSIS, 2022, 11 (01) : 1201 - 1222
  • [5] On the existence of solutions for nonhomogeneous Schrodinger-Poisson system
    Wang, Lixia
    Ma, Shiwang
    Wang, Xiaoming
    BOUNDARY VALUE PROBLEMS, 2016,
  • [6] MULTIPLE SOLUTIONS FOR A NONHOMOGENEOUS SCHRODINGER-POISSON SYSTEM WITH CONCAVE AND CONVEX NONLINEARITIES
    Wang, Lixia
    Ma, Shiwang
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2019, 9 (02): : 628 - 637
  • [7] MULTIPLE SOLUTIONS FOR NONHOMOGENEOUS SCHRODINGER-POISSON SYSTEM WITH p-LAPLACIAN
    Huang, Lanxin
    Su, Jiabao
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 2023 (28) : 1 - 14
  • [8] The quasilinear Schrodinger-Poisson system
    Du, Yao
    Su, Jiabao
    Wang, Cong
    JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (07)
  • [9] On a quasilinear Schrodinger-Poisson system
    Du, Yao
    Su, Jiabao
    Wang, Cong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 505 (01)
  • [10] Multiple nontrivial solutions for a nonhomogeneous Schrodinger-Poisson system in R3
    Khoutir, Sofiane
    Chen, Haibo
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2017, (28) : 1 - 17