MULTIPLE SOLUTIONS FOR NONHOMOGENEOUS QUASILINEAR SCHRoDINGER-POISSON SYSTEM

被引:1
|
作者
Huang, Lanxin [1 ]
Su, Jiabao [1 ]
机构
[1] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Nonhomogeneous quasilinear Schrodinger-Poisson system; vari-ational methods; multiple solutions; GROUND-STATE SOLUTIONS; SOLITARY WAVES; ELLIPTIC-EQUATIONS; MAXWELL; EXISTENCE;
D O I
10.11948/20220404
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the nonhomogeneous quasilinear Schrodinger-Poisson system { - increment pu + TuTp-2u + & lambda;& phi;TuTp-2u = TuTq-2u + h(x) in R3, - increment & phi; = TuTp in R3, where 1 < p < 3, p < q < p* = 3p 3-p , increment pu = div(T backward difference uTp-2 backward difference u), & lambda; > 0 and h = 0. Under suitable assumptions on h, the Ekeland's variational principle and the mountain pass theorem are applied to establish the existence of mul-tiple solutions for this system. To the best of our knowledge, this paper is one of the first contributions to the study of the nonhomogeneous quasilinear Schrodinger-Poisson system.
引用
收藏
页码:1597 / 1612
页数:16
相关论文
共 50 条