KAM THEOREM AND ISO-ENERGETIC KAM THEOREM ON POISSON MANIFOLD

被引:0
|
作者
Qian, Weichao [1 ]
机构
[1] Jilin Univ, Sch Math, Qianjin St, Changchun 130012, Peoples R China
来源
关键词
KAM theorem; Iso-energetic KAM theorem; Poisson manifold; LOWER-DIMENSIONAL TORI; INVARIANT TORI; PERSISTENCE; SYSTEMS; MULTISCALE; EXISTENCE; INTEGRABILITY; PERTURBATIONS; FLOWS;
D O I
10.11948/20220576
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In present paper, we give KAM theorem and iso-energetic KAM theorem for Hamiltonian system on n-dimensional Poisson manifold (M, pi) with rank pi = 2r everywhere, where pi is given a bivector field, 2r < n.
引用
收藏
页码:1088 / 1107
页数:20
相关论文
共 50 条
  • [1] AN ABSTRACT KAM THEOREM
    Garay, Mauricio
    [J]. MOSCOW MATHEMATICAL JOURNAL, 2014, 14 (04) : 745 - 772
  • [2] KAM theorem revisited
    Gentile, G
    Mastropietro, V
    [J]. PHYSICA D, 1996, 90 (03): : 225 - 234
  • [3] THE SEARCH FOR A QUANTUM KAM THEOREM
    REICHL, LE
    LIN, WA
    [J]. FOUNDATIONS OF PHYSICS, 1987, 17 (07) : 689 - 697
  • [4] An analytic counterexample to the KAM theorem
    Bessi, U
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2000, 20 : 317 - 333
  • [5] KAM theorem for Gevrey Hamiltonians
    Popov, G
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2004, 24 : 1753 - 1786
  • [6] Iso-manifold KAM persistence
    Zhao, Xuefeng
    Li, Yong
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 310 : 484 - 505
  • [7] The KAM theorem and renormalization group
    De Simone, E.
    Kupiainen, A.
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2009, 29 : 419 - 431
  • [8] A note on the KAM theorem for symplectic mappings
    Shang Z.-J.
    [J]. Journal of Dynamics and Differential Equations, 2000, 12 (2) : 357 - 383
  • [9] A KAM theorem for the defocusing NLS equation
    Kappeler, Thomas
    Liang, Zhenguo
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (06) : 4068 - 4113
  • [10] A GEOMETRICAL-SETTING FOR THE KAM THEOREM
    FERRARIO, C
    LOVECCHIO, G
    MARMO, G
    MORANDI, G
    [J]. LETTERE AL NUOVO CIMENTO, 1983, 38 (04): : 97 - 102