Iso-manifold KAM persistence

被引:1
|
作者
Zhao, Xuefeng [1 ]
Li, Yong [1 ,2 ,3 ]
机构
[1] Jilin Univ, Coll Math, Changchun 130012, Peoples R China
[2] Northeast Normal Univ, Sch Math & Stat, Changchun 130024, Peoples R China
[3] Northeast Normal Univ, Ctr Math & Interdisciplinary Sci, Changchun 130024, Peoples R China
关键词
Hamiltonian system; Iso-manifold KAM theorem; Riemannian manifold; INVARIANT TORI;
D O I
10.1016/j.jde.2021.10.059
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the iso-manifold persistence in formulism. We employ a quasilinear iterative scheme to show that the majority of unperturbed tori give rise to invariant tori of the perturbed system starting from the same Riemannian manifold and keep the ratio of certain components of the respective frequencies. We also consider the iso-manifold Melnikov persistence. (c) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:484 / 505
页数:22
相关论文
共 24 条
  • [1] KAM THEOREM AND ISO-ENERGETIC KAM THEOREM ON POISSON MANIFOLD
    Qian, Weichao
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2023, 13 (02): : 1088 - 1107
  • [2] KAM tori: persistence and smoothness
    Sevryuk, Mikhail B.
    [J]. NONLINEARITY, 2008, 21 (10) : T177 - T185
  • [3] KAM PERSISTENCE FOR MULTISCALE GENERALIZED HAMILTONIAN SYSTEMS
    Qian, Weichao
    Yang, Xue
    Li, Yong
    [J]. COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2023, 21 (02) : 559 - 579
  • [4] KAM-persistence of finite-gap solutions
    Kuksin, SB
    [J]. DYNAMICAL SYSTEMS AND SMALL DIVISORS, 2002, 1784 : 61 - 123
  • [5] The Persistence of a Slow Manifold with Bifurcation
    Kristiansen, K. Uldall
    Palmer, P.
    Roberts, R. M.
    [J]. SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2012, 11 (02): : 661 - 683
  • [6] Persistence Fisher Kernel: A Riemannian Manifold Kernel for Persistence Diagrams
    Le, Tam
    Yamada, Makoto
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [7] THE PERSISTENCE OF MOUSE ISO-ANTIBODIES INVIVO
    AMOS, DB
    [J]. BRITISH JOURNAL OF CANCER, 1955, 9 (01) : 216 - 221
  • [8] Existence of quasiperiodic solutions of elliptic equations on RN+1 via center manifold and KAM theorems
    Polacik, Peter
    Valdebenito, Dario A.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 262 (12) : 6109 - 6164
  • [9] Iso-Geometric Integral Equation Solvers and Their Compression via Manifold Harmonics
    Alsnayyan, A. M. A.
    Shanker, B.
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2022, 70 (08) : 6893 - 6904
  • [10] Persistence of a normally hyperbolic manifold for a system of non densely defined Cauchy problems
    Magal, Pierre
    Seydi, Ousmane
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 267 (05) : 2950 - 3008