KAM THEOREM AND ISO-ENERGETIC KAM THEOREM ON POISSON MANIFOLD

被引:0
|
作者
Qian, Weichao [1 ]
机构
[1] Jilin Univ, Sch Math, Qianjin St, Changchun 130012, Peoples R China
来源
关键词
KAM theorem; Iso-energetic KAM theorem; Poisson manifold; LOWER-DIMENSIONAL TORI; INVARIANT TORI; PERSISTENCE; SYSTEMS; MULTISCALE; EXISTENCE; INTEGRABILITY; PERTURBATIONS; FLOWS;
D O I
10.11948/20220576
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In present paper, we give KAM theorem and iso-energetic KAM theorem for Hamiltonian system on n-dimensional Poisson manifold (M, pi) with rank pi = 2r everywhere, where pi is given a bivector field, 2r < n.
引用
收藏
页码:1088 / 1107
页数:20
相关论文
共 50 条
  • [11] KAM theorem for the nonlinear Schrodinger equation
    Grebert, B
    Kappeler, T
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 327 (05): : 473 - 478
  • [12] KAM theorem and quantum field theory
    Bricmont, J
    Gawedzki, K
    Kupiainen, A
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 201 (03) : 699 - 727
  • [13] AN APPLICATION OF KAM THEOREM OF REVERSIBLE SYSTEMS
    柳彬
    [J]. Science China Mathematics, 1991, (09) : 1068 - 1078
  • [14] AN APPLICATION OF KAM THEOREM OF REVERSIBLE SYSTEMS
    柳彬
    [J]. Science in China,Ser.A., 1991, Ser.A.1991 (09) - 1078
  • [15] KAM Theorem and Quantum Field Theory
    Jean Bricmont
    Krzysztof Gawędzki
    Antti Kupiainen
    [J]. Communications in Mathematical Physics, 1999, 201 : 699 - 727
  • [16] KAM theorem for the nonlinear Schrodinger equation
    Grébert, B
    Kappeler, T
    [J]. JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2001, 8 : 133 - 138
  • [17] Multiscale KAM theorem for Hamiltonian systems
    Qian, Weichao
    Li, Yong
    Yang, Xue
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 266 (01) : 70 - 86
  • [18] Action-angle variables and a KAM theorem for b-Poisson manifolds
    Kiesenhofer, Anna
    Miranda, Eva
    Scott, Geoffrey
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2016, 105 (01): : 66 - 85
  • [19] A KAM theorem for finitely differentiable Hamiltonian systems
    Koudjinan, C. E.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (06) : 4720 - 4750
  • [20] KAM theorem of symplectic algorithms for Hamiltonian systems
    Shang, ZJ
    [J]. NUMERISCHE MATHEMATIK, 1999, 83 (03) : 477 - 496