KAM THEOREM AND ISO-ENERGETIC KAM THEOREM ON POISSON MANIFOLD

被引:0
|
作者
Qian, Weichao [1 ]
机构
[1] Jilin Univ, Sch Math, Qianjin St, Changchun 130012, Peoples R China
来源
关键词
KAM theorem; Iso-energetic KAM theorem; Poisson manifold; LOWER-DIMENSIONAL TORI; INVARIANT TORI; PERSISTENCE; SYSTEMS; MULTISCALE; EXISTENCE; INTEGRABILITY; PERTURBATIONS; FLOWS;
D O I
10.11948/20220576
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In present paper, we give KAM theorem and iso-energetic KAM theorem for Hamiltonian system on n-dimensional Poisson manifold (M, pi) with rank pi = 2r everywhere, where pi is given a bivector field, 2r < n.
引用
收藏
页码:1088 / 1107
页数:20
相关论文
共 50 条
  • [31] A KAM Theorem for Reversible Systems of Infinite Dimension
    Shun Qing CHEN Department of Mathematics
    [J]. Acta Mathematica Sinica,English Series, 2007, 23 (10) : 1777 - 1796
  • [32] A KAM Theorem for Reversible Systems of Infinite Dimension
    Shun Qing Chen
    Xiao Ping Yuan*
    [J]. Acta Mathematica Sinica, English Series, 2007, 23 : 1777 - 1796
  • [33] KAM theorem of symplectic algorithms for Hamiltonian systems
    Zai-jiu Shang
    [J]. Numerische Mathematik, 1999, 83 : 477 - 496
  • [34] A Hamiltonian KAM theorem for bundles of Lagrangean tori
    Broer, HW
    Cushman, RH
    Fassò, F
    [J]. EQUADIFF 2003: INTERNATIONAL CONFERENCE ON DIFFERENTIAL EQUATIONS, 2005, : 696 - 701
  • [35] KAM THEOREM FOR REVERSIBLE MAPPING OF LOW SMOOTHNESS WITH APPLICATION
    Li, Jing
    Qi, Jiangang
    Yuan, Xiaoping
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2023, 43 (10) : 3563 - 3581
  • [36] KAM theorem for generic analytic perturbations of the Euler system
    Mazzocco, M
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1997, 48 (02): : 193 - 219
  • [37] A KAM Theorem for a Class of Nearly Integrable Symplectic Mappings
    Lu, Xuezhu
    Li, Jia
    Xu, Junxiang
    [J]. JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2017, 29 (01) : 131 - 154
  • [38] A KAM Theorem for a Class of Nearly Integrable Symplectic Mappings
    Xuezhu Lu
    Jia Li
    Junxiang Xu
    [J]. Journal of Dynamics and Differential Equations, 2017, 29 : 131 - 154
  • [39] A KAM Theorem for Higher Dimensional Nonlinear Schrodinger Equations
    Geng, Jiansheng
    You, Jiangong
    [J]. JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2013, 25 (02) : 451 - 476
  • [40] A KAM Theorem for Space-Multidimensional Hamiltonian PDEs
    Eliasson, L. Hakan
    Grebert, Benoit
    Kuksin, Sergei B.
    [J]. PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2016, 295 (01) : 129 - 147