Refined parity biases in integer partitions

被引:1
|
作者
Kim, Byungchan [1 ]
Kim, Eunmi [2 ]
机构
[1] Seoul Natl Univ Sci & Technol, Sch Nat Sci, 232 Gongneung ro, Seoul 01811, South Korea
[2] Ewha Womans Univ, IMS, 52 Ewhayeodae gil, Seoul 03760, South Korea
基金
新加坡国家研究基金会;
关键词
Parity bias; Integer partition;
D O I
10.1016/j.disc.2022.113308
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recently, the authors and Jeremy Lovejoy proved that there is a parity bias in integer partitions, namely po(n) > pe(n) for all positive integers n not equal 2, where p(o)(n) (resp. p(e)(n)) is the number of partitions of n with more odd (resp. even) parts than even (resp. odd) parts. In this paper, we give two refinements of the parity bias in integer partitions. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Integer partitions with fixed subsums
    Yakubovich, Y
    ELECTRONIC JOURNAL OF COMBINATORICS, 2005, 12 (01):
  • [22] Integer partitions into Diophantine pairs
    Bencherif, F.
    Benyahia-Tani, N.
    Bouroubi, S.
    Kihel, O.
    Yahi, Z.
    QUAESTIONES MATHEMATICAE, 2017, 40 (04) : 435 - 442
  • [23] Optimal transport and integer partitions
    Hohloch, Sonja
    DISCRETE APPLIED MATHEMATICS, 2015, 190 : 75 - 85
  • [24] An expansion for the number of partitions of an integer
    Brassesco, Stella
    Meyroneinc, Arnaud
    RAMANUJAN JOURNAL, 2020, 51 (03): : 563 - 592
  • [25] Integer partitions and the Sperner property
    Canfield, ER
    THEORETICAL COMPUTER SCIENCE, 2003, 307 (03) : 515 - 529
  • [26] Integer partitions and exclusion statistics
    Comtet, Alain
    Majumdar, Satya N.
    Ouvry, Stephane
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (37) : 11255 - 11269
  • [27] UNLIMITED PARITY ALTERNATING PARTITIONS
    Chern, Shane
    QUAESTIONES MATHEMATICAE, 2019, 42 (10) : 1345 - 1352
  • [28] Composite fermions and integer partitions
    Benjamin, AT
    Quinn, JJ
    Quinn, JJ
    Wójs, A
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2001, 95 (02) : 390 - 397
  • [29] Integer partitions probability distributions
    Sills, Andrew V.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2021, 50 (15) : 3556 - 3563
  • [30] EDGES IN THE POSET OF PARTITIONS OF AN INTEGER
    ROBINSON, JP
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1988, 48 (02) : 236 - 238