Integer partitions and exclusion statistics

被引:22
|
作者
Comtet, Alain [1 ]
Majumdar, Satya N.
Ouvry, Stephane
机构
[1] Univ Paris 11, Lab Phys Theor & modeles Statist, CNRS, YNR 8626, F-91405 Orsay, France
[2] Inst Poincare, F-75005 Paris, France
关键词
D O I
10.1088/1751-8113/40/37/004
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We provide a combinatorial description of exclusion statistics in terms of minimal difference p partitions. We compute the probability distribution of the number of parts in a random minimal p partition. It is shown that the bosonic point p = 0 is a repulsive fixed point for which the limiting distribution has a Gumbel form. For all positive p, the distribution is shown to be Gaussian.
引用
收藏
页码:11255 / 11269
页数:15
相关论文
共 50 条
  • [1] Integer partitions and exclusion statistics: limit shapes and the largest parts of young diagrams
    Comtet, Alain
    Majumdar, Satya N.
    Ouvry, Stephane
    Sabhapandit, Sanjib
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2007,
  • [2] On the distribution of rank and crank statistics for integer partitions
    Nian Hong Zhou
    Research in Number Theory, 2019, 5
  • [3] On the distribution of rank and crank statistics for integer partitions
    Zhou, Nian Hong
    RESEARCH IN NUMBER THEORY, 2019, 5 (02)
  • [4] Integer partitions
    Baylis, John
    MATHEMATICAL GAZETTE, 2005, 89 (516): : 564 - 565
  • [5] Eventual log-concavity of k-rank statistics for integer partitions
    Zhou, Nian Hong
    JOURNAL OF NUMBER THEORY, 2024, 259 : 242 - 272
  • [6] Optimal integer partitions
    Engel, Konrad
    Radzik, Tadeusz
    Schlage-Puchta, Jan-Christoph
    EUROPEAN JOURNAL OF COMBINATORICS, 2014, 36 : 425 - 436
  • [7] Notes on integer partitions
    Ganter, Bernhard
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2022, 142 : 31 - 40
  • [8] ON THE POSET OF PARTITIONS OF AN INTEGER
    ZIEGLER, GM
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1986, 42 (02) : 215 - 222
  • [9] Integer Partitions and Convexity
    Bouroubi, Sadek
    JOURNAL OF INTEGER SEQUENCES, 2007, 10 (06)
  • [10] Constrained integer partitions
    Borgs, C
    Chayes, JT
    Mertens, S
    Pittel, B
    LATIN 2004: THEORETICAL INFORMATICS, 2004, 2976 : 59 - 68