Integer partitions and exclusion statistics

被引:22
|
作者
Comtet, Alain [1 ]
Majumdar, Satya N.
Ouvry, Stephane
机构
[1] Univ Paris 11, Lab Phys Theor & modeles Statist, CNRS, YNR 8626, F-91405 Orsay, France
[2] Inst Poincare, F-75005 Paris, France
关键词
D O I
10.1088/1751-8113/40/37/004
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We provide a combinatorial description of exclusion statistics in terms of minimal difference p partitions. We compute the probability distribution of the number of parts in a random minimal p partition. It is shown that the bosonic point p = 0 is a repulsive fixed point for which the limiting distribution has a Gumbel form. For all positive p, the distribution is shown to be Gaussian.
引用
收藏
页码:11255 / 11269
页数:15
相关论文
共 50 条
  • [41] Combinatorics of integer partitions with prescribed perimeter
    Lin, Zhicong
    Xiong, Huan
    Yan, Sherry H. F.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2023, 197
  • [42] Integer partitions with large Dyson rank
    Albert, Colin
    Beckwith, Olivia
    Demetoglu, Irfan
    Dicks, Robert
    Smith, John H.
    Wang, Jasmine
    JOURNAL OF THE RAMANUJAN MATHEMATICAL SOCIETY, 2023, 38 (01) : 15 - 21
  • [43] On Integer Partitions Corresponding to Numerical Semigroups
    Hannah E. Burson
    Hayan Nam
    Simone Sisneros-Thiry
    Results in Mathematics, 2023, 78
  • [44] Latin hypercubes realizing integer partitions
    Donovan, Diane
    Kemp, Tara
    Lefevre, James
    DISCRETE MATHEMATICS, 2025, 348 (03)
  • [45] Nuclear level density and partitions of an integer
    Cole, AJ
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2005, 31 (12) : 1445 - 1452
  • [46] Arrow relations in lattices of integer partitions
    Almazaydeh, Asma'a
    Behrisch, Mike
    Vargas-Garcia, Edith
    Wachtel, Andreas
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2024, 172
  • [47] Mutually describing multisets and integer partitions
    Eliahou, Shalom
    Erickson, Martin J.
    DISCRETE MATHEMATICS, 2013, 313 (04) : 422 - 433
  • [48] Constant time generation of integer partitions
    Yamanaka, Katsuhisa
    Kawano, Shin-ichiro
    Kikuchi, Yosuke
    Nakano, Shin-ichi
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2007, E90A (05) : 888 - 895
  • [49] Refined parity biases in integer partitions
    Kim, Byungchan
    Kim, Eunmi
    DISCRETE MATHEMATICS, 2023, 346 (04)
  • [50] PART SIZES OF RANDOM INTEGER PARTITIONS
    SCHMUTZ, E
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1994, 25 (06): : 567 - 575