Refined parity biases in integer partitions

被引:1
|
作者
Kim, Byungchan [1 ]
Kim, Eunmi [2 ]
机构
[1] Seoul Natl Univ Sci & Technol, Sch Nat Sci, 232 Gongneung ro, Seoul 01811, South Korea
[2] Ewha Womans Univ, IMS, 52 Ewhayeodae gil, Seoul 03760, South Korea
基金
新加坡国家研究基金会;
关键词
Parity bias; Integer partition;
D O I
10.1016/j.disc.2022.113308
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recently, the authors and Jeremy Lovejoy proved that there is a parity bias in integer partitions, namely po(n) > pe(n) for all positive integers n not equal 2, where p(o)(n) (resp. p(e)(n)) is the number of partitions of n with more odd (resp. even) parts than even (resp. odd) parts. In this paper, we give two refinements of the parity bias in integer partitions. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] BIASES IN INTEGER PARTITIONS
    Kim, Byungchan
    Kim, Eunmi
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2021, 104 (02) : 177 - 186
  • [2] Parity biases in partitions and restricted partitions
    Banerjee, Koustav
    Bhattacharjee, Sreerupa
    Dastidar, Manosij Ghosh
    Mahanta, Pankaj Jyoti
    Saikia, Manjil P.
    EUROPEAN JOURNAL OF COMBINATORICS, 2022, 103
  • [3] FURTHER RESULTS ON BIASES IN INTEGER PARTITIONS
    Chern, Shane
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2022, 59 (01) : 111 - 117
  • [4] Asymptotics of parity biases for partitions into distinct parts via Nahm sums
    Bringmann, Kathrin
    Man, Siu Hang
    Rolen, Larry
    Storzer, Matthias
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2024, 129 (06)
  • [5] Integer partitions
    Baylis, John
    MATHEMATICAL GAZETTE, 2005, 89 (516): : 564 - 565
  • [6] Optimal integer partitions
    Engel, Konrad
    Radzik, Tadeusz
    Schlage-Puchta, Jan-Christoph
    EUROPEAN JOURNAL OF COMBINATORICS, 2014, 36 : 425 - 436
  • [7] Notes on integer partitions
    Ganter, Bernhard
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2022, 142 : 31 - 40
  • [8] ON THE POSET OF PARTITIONS OF AN INTEGER
    ZIEGLER, GM
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1986, 42 (02) : 215 - 222
  • [9] Constrained integer partitions
    Borgs, C
    Chayes, JT
    Mertens, S
    Pittel, B
    LATIN 2004: THEORETICAL INFORMATICS, 2004, 2976 : 59 - 68
  • [10] Integer Partitions and Convexity
    Bouroubi, Sadek
    JOURNAL OF INTEGER SEQUENCES, 2007, 10 (06)