Refined parity biases in integer partitions

被引:1
|
作者
Kim, Byungchan [1 ]
Kim, Eunmi [2 ]
机构
[1] Seoul Natl Univ Sci & Technol, Sch Nat Sci, 232 Gongneung ro, Seoul 01811, South Korea
[2] Ewha Womans Univ, IMS, 52 Ewhayeodae gil, Seoul 03760, South Korea
基金
新加坡国家研究基金会;
关键词
Parity bias; Integer partition;
D O I
10.1016/j.disc.2022.113308
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recently, the authors and Jeremy Lovejoy proved that there is a parity bias in integer partitions, namely po(n) > pe(n) for all positive integers n not equal 2, where p(o)(n) (resp. p(e)(n)) is the number of partitions of n with more odd (resp. even) parts than even (resp. odd) parts. In this paper, we give two refinements of the parity bias in integer partitions. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] On the Distribution of Multiplicities in Integer Partitions
    Ralaivaosaona, Dimbinaina
    ANNALS OF COMBINATORICS, 2012, 16 (04) : 871 - 889
  • [32] A New Approach to Integer Partitions
    Santos, J. P. O.
    Matte, M. L.
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2018, 49 (04): : 811 - 847
  • [33] The lattice of partitions of a positive integer
    V. A. Baransky
    T. A. Koroleva
    Doklady Mathematics, 2008, 77 : 72 - 75
  • [34] The Minimal Excludant in Integer Partitions
    Andrews, George E.
    Newman, David
    JOURNAL OF INTEGER SEQUENCES, 2020, 23 (02)
  • [35] GEOMETRIC POLYNOMIALS AND INTEGER PARTITIONS
    Merca, Mircea
    CONTRIBUTIONS TO DISCRETE MATHEMATICS, 2021, 16 (01) : 117 - 127
  • [36] CONSECUTIVE-INTEGER PARTITIONS
    GUERIN, EE
    ARS COMBINATORIA, 1995, 39 : 255 - 260
  • [37] Integer partitions and binary trees
    Schmidt, F
    ADVANCES IN APPLIED MATHEMATICS, 2002, 28 (3-4) : 592 - 601
  • [38] Partitions with Parts Separated by Parity
    George E. Andrews
    Annals of Combinatorics, 2019, 23 : 241 - 248
  • [39] Partitions weighted by the parity of the crank
    Choi, Dohoon
    Kang, Soon-Yi
    Lovejoy, Jeremy
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2009, 116 (05) : 1034 - 1046
  • [40] Strongly intersecting integer partitions
    Borg, Peter
    DISCRETE MATHEMATICS, 2014, 336 : 80 - 84