Spatio-temporal heterogeneous graph using multivariate earth observation time series: Application for drought forecasting

被引:5
|
作者
Balti, Hanen [1 ,5 ]
Ben Abbes, Ali [1 ]
Sang, Yanfang [2 ,3 ]
Mellouli, Nedra [4 ,5 ]
Farah, Imed Riadh [1 ]
机构
[1] Univ Manouba, Natl Sch Comp Sci, RIADI Lab, Manouba 2010, Tunisia
[2] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Key Lab Water Cycle & Related Land Surface Proc, Beijing 100101, Peoples R China
[3] Minist Emergency Management China, Key Lab Cpd & Chained Nat Hazards, Beijing 100085, Peoples R China
[4] Paris 8 Univ, Lab Intelligence Artificielle & Semant Donnees LIA, F-93200 St Denis, France
[5] Leonard Vinci Pole Univ, Res Ctr Paris La Defense, Courbevoie, La Defense, France
基金
中国国家自然科学基金;
关键词
Heterogeneous graphs; Spatiotemporal data; Multivariate time series; Earth observation data; Drought forecasting; PREDICTION; SPI; CHALLENGES; CHINA;
D O I
10.1016/j.cageo.2023.105435
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Accurate forecasting is required for the effective risk management of drought disasters. Many machine learning and deep learning-based models have been proposed for drought forecasting, however, they cannot handle the temporal and/or spatial dependencies in the input data, causing unexpected forecasting results. In order to solve the challenging issue, in this paper we proposed the Heterogeneous Spatio-Temporal Graph (HetSPGraph), for drought forecasting. It includes three major layers: spatial aggregations including inter and intra aggregations, temporal aggregation, and a forecasting network. The main function of HetSPGraph is to learn the dynamic spatiotemporal correlations between the regions and to further predict the drought in different regions, based on which accurate drought forecasting can be achieved. Experimental forecasting results of the Standardized Precipitation Evapotranspiration Index (SPEI) in China indicated that the HetSPGraph model outperformed the traditional baseline methods including the Long Short-Term Memory model (LSTM), Convolutional Neural Network-LSTM (CNN-LSTM), Gated Recurrent Unit (GRU), Spatio-Temporal Graph Convolutional Networks (STGCN) and Geographic-Semantic-Temporal Hypergraph Convolutional Network (GST-HCN). Even for long-term forecasting (12 months), more accurate forecasting results, with the coefficient of determination R2 higher than 0.89, can also be obtained by HetSPGraph compared to the other three models. The proposed HetSPGraph model has the potential for wider use in forecasting drought and other natural disasters.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Spatio-temporal drought forecasting within Bayesian networks
    Madadgar, Shahrbanou
    Moradkhani, Hamid
    JOURNAL OF HYDROLOGY, 2014, 512 : 134 - 146
  • [32] STGT: Forecasting Pedestrian Motion Using Spatio-Temporal Graph Transformer
    Syed, Arsal
    Morris, Brendan
    2021 32ND IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2021, : 1553 - 1558
  • [33] Spatio-Temporal Heterogeneous Graph-Based Convolutional Networks for Traffic Flow Forecasting
    Ma, Zhaobin
    Lv, Zhiqiang
    Xin, Xiaoyang
    Cheng, Zesheng
    Xia, Fengqian
    Li, Jianbo
    TRANSPORTATION RESEARCH RECORD, 2024, 2678 (08) : 120 - 133
  • [34] A Unified Graph Formulation for Spatio-Temporal Wind Forecasting
    Bentsen, Lars odegaard
    Warakagoda, Narada Dilp
    Stenbro, Roy
    Engelstad, Paal
    ENERGIES, 2023, 16 (20)
  • [35] Traffic Forecasting with Spatio-Temporal Graph Neural Networks
    Shah, Shehal
    Doshi, Prince
    Mangle, Shlok
    Tawde, Prachi
    Sawant, Vinaya
    ARTIFICIAL INTELLIGENCE AND KNOWLEDGE PROCESSING, AIKP 2024, 2025, 2228 : 183 - 197
  • [36] Spatio-Temporal Graph Structure Learning for Traffic Forecasting
    Zhang, Qi
    Chang, Jianlong
    Meng, Gaofeng
    Xiang, Shiming
    Pan, Chunhong
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 1177 - 1185
  • [37] DeepWind: a heterogeneous spatio-temporal model for wind forecasting
    Wang, Bin
    Shi, Junrui
    Tan, Binyu
    Ma, Minbo
    Hong, Feng
    Yu, Yanwei
    Li, Tianrui
    KNOWLEDGE-BASED SYSTEMS, 2024, 286
  • [38] Explainable Spatio-Temporal GCNNs for Irregular Multivariate Time Series: Architecture and Application to ICU Patient Data
    Escudero-Arnanz, Óscar
    Soguero-Ruiz, Cristina
    Marques, Antonio G.
    arXiv,
  • [39] An enhanced spatio-temporal constraints network for anomaly detection in multivariate time series
    Ge, Di
    Dong, Zheng
    Cheng, Yuhang
    Wu, Yanwen
    KNOWLEDGE-BASED SYSTEMS, 2024, 283
  • [40] Heterogeneous Graph Transformer Auto-Encoder for multivariate time series forecasting
    Ye, Hongjiang
    Sun, Ying
    Gao, Yu
    Xu, Feiyi
    Qi, Jin
    COMPUTERS & ELECTRICAL ENGINEERING, 2025, 122