Spatio-Temporal Heterogeneous Graph-Based Convolutional Networks for Traffic Flow Forecasting

被引:0
|
作者
Ma, Zhaobin [1 ]
Lv, Zhiqiang [1 ]
Xin, Xiaoyang [1 ]
Cheng, Zesheng [1 ]
Xia, Fengqian [1 ]
Li, Jianbo [1 ]
机构
[1] Qingdao Univ, Coll Comp Sci & Technol, Qingdao, Peoples R China
基金
中国国家自然科学基金;
关键词
operations; traffic flow theory and characteristics; models; network; traffic flow; PREDICTION; MODEL;
D O I
10.1177/03611981231213878
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Traffic flow forecasting plays a crucial role in the construction of intelligent transportation. The aims of this paper are to fully exploit the spatial correlation between nodes in a traffic network and to compensate for the inability of graph-based deep learning methods to model multiple relationship types, resulting in inadequate extraction of spatially correlated information about the traffic network. In this paper, we propose a deep spatio-temporal recurrent evolution network based on the graph convolution network (STREGCN) for heterogeneous graphs. Specifically, we transform the traffic network into a multi-relational heterogeneous graph to improve the information representation of the graph. This allows our model to capture multiple types of spatially relevant information. In the temporal dimension, we use one-dimensional causal convolution based on the gated linear unit to extract the temporal correlation information of the traffic flow. In addition, we designed the output of the spatio-temporal convolution module to obtain the final traffic flow predictions after a fully connected layer. Experiments on real datasets illustrate the effectiveness of the proposed STREGCN model and show the importance of representing information through heterogeneous graphs for the task of traffic flow prediction.
引用
下载
收藏
页码:120 / 133
页数:14
相关论文
共 50 条
  • [1] Spatio-temporal adaptive graph convolutional networks for traffic flow forecasting
    Ma, Qiwei
    Sun, Wei
    Gao, Junbo
    Ma, Pengwei
    Shi, Mengjie
    IET INTELLIGENT TRANSPORT SYSTEMS, 2023, 17 (04) : 691 - 703
  • [2] A Method of Traffic Flow Forecasting Using Spatio-Temporal Graph Convolutional Networks
    Fukuda, Renya
    Tanaka, Haruka
    Kasamatsu, Daisuke
    GCCE 2024 - 2024 IEEE 13th Global Conference on Consumer Electronics, 2024, : 500 - 501
  • [3] Spatio-Temporal Joint Graph Convolutional Networks for Traffic Forecasting
    Zheng, Chuanpan
    Fan, Xiaoliang
    Pan, Shirui
    Jin, Haibing
    Peng, Zhaopeng
    Wu, Zonghan
    Wang, Cheng
    Yu, Philip S.
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (01) : 372 - 385
  • [4] Hierarchical Spatio-Temporal Graph Convolutional Networks and Transformer Network for Traffic Flow Forecasting
    Huo, Guangyu
    Zhang, Yong
    Wang, Boyue
    Gao, Junbin
    Hu, Yongli
    Yin, Baocai
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (04) : 3855 - 3867
  • [5] Spatio-temporal fusion graph convolutional network for traffic flow forecasting
    Ma, Ying
    Lou, Haijie
    Yan, Ming
    Sun, Fanghui
    Li, Guoqi
    INFORMATION FUSION, 2024, 104
  • [6] Traffic Flow Forecasting of Graph Convolutional Network Based on Spatio-Temporal Attention Mechanism
    Hong Zhang
    Linlong Chen
    Jie Cao
    Xijun Zhang
    Sunan Kan
    Tianxin Zhao
    International Journal of Automotive Technology, 2023, 24 : 1013 - 1023
  • [7] Traffic Flow Forecasting of Graph Convolutional Network Based on Spatio-Temporal Attention Mechanism
    Zhang, Hong
    Chen, Linlong
    Cao, Jie
    Zhang, Xijun
    Kan, Sunan
    Zhao, Tianxin
    INTERNATIONAL JOURNAL OF AUTOMOTIVE TECHNOLOGY, 2023, 24 (04) : 1013 - 1023
  • [8] Spatio-Temporal Graph Convolutional Networks for Short-Term Traffic Forecasting
    Agafonov, Anton
    Yumaganov, Alexander
    2020 VI INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND NANOTECHNOLOGY (IEEE ITNT-2020), 2020,
  • [9] Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting
    Yu, Bing
    Yin, Haoteng
    Zhu, Zhanxing
    PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 3634 - 3640
  • [10] Spatio-Temporal Pivotal Graph Neural Networks for Traffic Flow Forecasting
    Kong, Weiyang
    Guo, Ziyu
    Liu, Yubao
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 8, 2024, : 8627 - 8635