Spatio-temporal fusion graph convolutional network for traffic flow forecasting

被引:4
|
作者
Ma, Ying [1 ,2 ]
Lou, Haijie [2 ]
Yan, Ming [3 ]
Sun, Fanghui [1 ]
Li, Guoqi [4 ]
机构
[1] Harbin Inst Technol, Fac Comp, Harbin, Peoples R China
[2] Xiamen Univ Technol, Fac Comp & Informat Engn, Xiamen, Peoples R China
[3] Agcy Sci Technol & Res, Ctr Frontier AI Res, Singapore City, Singapore
[4] Chinese Acad Sci, Inst Automat, Beijing, Peoples R China
关键词
Graph convolutional network; Spatio-temporal data; Traffic forecasting; SPEED PREDICTION;
D O I
10.1016/j.inffus.2023.102196
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In most recent research, the traffic forecasting task is typically formulated as a spatiotemporal graph modeling problem. For spatial correlation, they typically learn the shared pattern (i.e., the most salient pattern) of traffic series and measure the interdependence between traffic series based on a predefined graph. On the one hand, learning a specific traffic pattern for each node (traffic series) is crucial and essential for accurate spatial correlation learning. On the other hand, most predefined graphs cannot accurately represent the interdependence between traffic series because they are unchangeable while the prediction task changes. For temporal correlation, they usually concentrate on contiguous temporal correlation. Therefore, they are insufficient due to their lack of global temporal correlation learning. To overcome these aforementioned limitations, we propose a novel method named Spatio-Temporal Fusion Graph Convolutional Network (STFGCN). In the spatial aspect, we introduce a node-specific graph convolution operation to learn the node-specific patterns of each node (traffic series). Then, an adaptive adjacent matrix is introduced to represent the interdependence between traffic series. In the temporal aspect, a contiguous temporal correlation learning module is introduced to learn the contiguous temporal correlation of traffic series. Furthermore, a transformer-based global temporal correlation learning module is introduced to learn the global dependence of the traffic series. Experimental results show that our method significantly outperforms other competitive methods on two real-world traffic datasets (PeMSD4 and PeMSD8).
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Probabilistic spatio-temporal graph convolutional network for traffic forecasting
    Karim, Atkia Akila
    Nower, Naushin
    [J]. APPLIED INTELLIGENCE, 2024, : 7070 - 7085
  • [2] Hierarchical Spatio-Temporal Graph Convolutional Networks and Transformer Network for Traffic Flow Forecasting
    Huo, Guangyu
    Zhang, Yong
    Wang, Boyue
    Gao, Junbin
    Hu, Yongli
    Yin, Baocai
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (04) : 3855 - 3867
  • [3] Traffic Flow Forecasting of Graph Convolutional Network Based on Spatio-Temporal Attention Mechanism
    Hong Zhang
    Linlong Chen
    Jie Cao
    Xijun Zhang
    Sunan Kan
    Tianxin Zhao
    [J]. International Journal of Automotive Technology, 2023, 24 : 1013 - 1023
  • [4] Traffic Flow Forecasting of Graph Convolutional Network Based on Spatio-Temporal Attention Mechanism
    Zhang, Hong
    Chen, Linlong
    Cao, Jie
    Zhang, Xijun
    Kan, Sunan
    Zhao, Tianxin
    [J]. INTERNATIONAL JOURNAL OF AUTOMOTIVE TECHNOLOGY, 2023, 24 (04) : 1013 - 1023
  • [5] Spatio-temporal adaptive graph convolutional networks for traffic flow forecasting
    Ma, Qiwei
    Sun, Wei
    Gao, Junbo
    Ma, Pengwei
    Shi, Mengjie
    [J]. IET INTELLIGENT TRANSPORT SYSTEMS, 2023, 17 (04) : 691 - 703
  • [6] A Spatio-Temporal Tree and Gauss Convolutional Network for Traffic Flow Forecasting
    Ma, Zhaobin
    Lv, Zhiqiang
    Li, Jianbo
    Xia, Fengqian
    [J]. 2023 19TH INTERNATIONAL CONFERENCE ON MOBILITY, SENSING AND NETWORKING, MSN 2023, 2023, : 722 - 729
  • [7] Spatio-Temporal Graph Attention Convolution Network for Traffic Flow Forecasting
    Liu, Kun
    Zhu, Yifan
    Wang, Xiao
    Ji, Hongya
    Huang, Chengfei
    [J]. TRANSPORTATION RESEARCH RECORD, 2024, 2678 (09) : 136 - 149
  • [8] Dynamic Spatio-Temporal Graph Fusion Convolutional Network for Urban Traffic Prediction
    Ma, Haodong
    Qin, Xizhong
    Jia, Yuan
    Zhou, Junwei
    [J]. APPLIED SCIENCES-BASEL, 2023, 13 (16):
  • [9] Traffic Flow Driven Spatio-Temporal Graph Convolutional Network for Ride-Hailing Demand Forecasting
    Fu, Hao
    Wang, Zhong
    Yu, Yang
    Meng, Xianwei
    Liu, Guiquan
    [J]. ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2021, PT I, 2021, 12712 : 754 - 765
  • [10] Spatio-Temporal Joint Graph Convolutional Networks for Traffic Forecasting
    Zheng, Chuanpan
    Fan, Xiaoliang
    Pan, Shirui
    Jin, Haibing
    Peng, Zhaopeng
    Wu, Zonghan
    Wang, Cheng
    Yu, Philip S.
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (01) : 372 - 385