A Unified Graph Formulation for Spatio-Temporal Wind Forecasting

被引:0
|
作者
Bentsen, Lars odegaard [1 ]
Warakagoda, Narada Dilp [1 ]
Stenbro, Roy [2 ]
Engelstad, Paal [1 ]
机构
[1] Univ Oslo, Dept Technol Syst, POB 70, N-2027 Kjeller, Norway
[2] Inst Energy Technol, POB 40, N-2027 Kjeller, Norway
关键词
spatio-temporal forecasting; graph neural networks; missing data; irregular time series; wind energy;
D O I
10.3390/en16207179
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
With the rapid adoption of wind energy globally, there is a need for accurate short-term forecasting systems to improve the reliability and integration of such energy resources on a large scale. While most spatio-temporal forecasting systems comprise distinct components to learn spatial and temporal dependencies separately, this paper argues for an approach to learning spatio-temporal information jointly. Many time series forecasting systems also require aligned input information and do not naturally facilitate irregular data. Research is therefore required to investigate methodologies for forecasting in the presence of missing or corrupt measurements. To help combat some of these challenges, this paper studied a unified graph formulation. With the unified formulation, a graph neural network (GNN) was used to extract spatial and temporal dependencies simultaneously, in a single update, while also naturally facilitating missing data. To evaluate the proposed unified approach, the study considered hour-ahead wind speed forecasting in the North Sea under different amounts of missing data. The framework was compared against traditional spatio-temporal architectures that used GNNs together with temporal long short-term memory (LSTM) and Transformer or Autoformer networks, along with the imputation of missing values. The proposed framework outperformed the traditional architectures, with absolute errors of around 0.73-0.90 m per second, when subject to 0-80% of missing input data. The unified graph approach was also better at predicting large changes in wind speed, with an additional 10-percentage-point improvement over the second-best model. Overall, this paper investigated a novel methodology for spatio-temporal wind speed forecasting and showed how the proposed unified graph formulation achieved competitive results compared to more traditional GNN-based architectures.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Unified Spatio-Temporal Modeling for Traffic Forecasting using Graph Neural Network
    Roy, Amit
    Roy, Kashob Kumar
    Ali, Amin Ahsan
    Amin, M. Ashraful
    Rahman, A. K. M. Mahbubur
    [J]. 2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [2] Spatio-temporal graph mixformer for traffic forecasting
    Lablack, Mourad
    Shen, Yanming
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2023, 228
  • [3] DEEP SPATIO-TEMPORAL WIND POWER FORECASTING
    Li, Jiangyuan
    Armandpour, Mohammadreza
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 4138 - 4142
  • [4] Spatio-temporal wind speed forecasting using graph networks and novel Transformer architectures
    Bentsen, Lars Odegaard
    Warakagoda, Narada Dilp
    Stenbro, Roy
    Engelstad, Paal
    [J]. APPLIED ENERGY, 2023, 333
  • [5] Spatio-Temporal Graph Structure Learning for Traffic Forecasting
    Zhang, Qi
    Chang, Jianlong
    Meng, Gaofeng
    Xiang, Shiming
    Pan, Chunhong
    [J]. THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 1177 - 1185
  • [6] Wind speed forecasting using spatio-temporal indicators
    Ohashi, Orlando
    Torgo, Luis
    [J]. 20TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE (ECAI 2012), 2012, 242 : 975 - 980
  • [7] DeepWind: a heterogeneous spatio-temporal model for wind forecasting
    Wang, Bin
    Shi, Junrui
    Tan, Binyu
    Ma, Minbo
    Hong, Feng
    Yu, Yanwei
    Li, Tianrui
    [J]. KNOWLEDGE-BASED SYSTEMS, 2024, 286
  • [8] Self-supervised dynamic stochastic graph network for spatio-temporal wind speed forecasting
    Wu, Tangjie
    Ling, Qiang
    [J]. ENERGY, 2024, 304
  • [9] Spatio-Temporal Graph Deep Neural Network for Short-Term Wind Speed Forecasting
    Khodayar, Mahdi
    Wang, Jianhui
    [J]. IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2019, 10 (02) : 670 - 681
  • [10] A Survey on Spatio-Temporal Graph Neural Networks for Traffic Forecasting
    Zhang, Can
    Lei, Minglong
    [J]. 2023 23RD IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS, ICDMW 2023, 2023, : 1417 - 1423