Common Values of Generalized Fibonacci and Leonardo Sequences

被引:0
|
作者
Tripathy, Bibhu Prasad [1 ]
Patel, Bijan Kumar [1 ]
机构
[1] KIIT Univ Bhubaneswar, Sch Appl Sci, Dept Math, Bhubaneswar 751024, Odisha, India
关键词
k-generalized Fibonacci number; Leonardo number; linear form in logarithms; reduction method; K-FIBONACCI;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For an integer k > 2, let F (k) n be the k-generalized Fibonacci sequence that starts with 0, ... , 0,1,1 (k terms) and each term afterwards is the sum of k preceding terms. In this paper, we find all the k-generalized Fibonacci numbers that are Leonardo numbers. More explicitly, we solve the Diophantine equation F (k) n = Lem in positive integers n, k, m with k > 2.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] ∞-Generalized Fibonacci sequences and Markov chains
    Mouline, M
    Rachidi, M
    FIBONACCI QUARTERLY, 2000, 38 (04): : 364 - 371
  • [32] On square classes in generalized Fibonacci sequences
    Siar, Zafer
    Keskin, Refik
    ACTA ARITHMETICA, 2016, 174 (03) : 277 - 295
  • [33] INJECTIVITY OF EXTENDED GENERALIZED FIBONACCI SEQUENCES
    DEBOUVERE, KL
    LATHROP, RE
    FIBONACCI QUARTERLY, 1983, 21 (01): : 37 - 52
  • [34] Generalized Fibonacci sequences and linear congruences
    Sburlati, G
    FIBONACCI QUARTERLY, 2002, 40 (05): : 446 - 452
  • [35] On the reciprocal sums of the generalized Fibonacci sequences
    Zhang, Han
    Wu, Zhengang
    ADVANCES IN DIFFERENCE EQUATIONS, 2013,
  • [36] On the reciprocal products of generalized Fibonacci sequences
    Du, Tingting
    Wu, Zhengang
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2022, 2022 (01)
  • [37] On the reciprocal sums of the generalized Fibonacci sequences
    Han Zhang
    Zhengang Wu
    Advances in Difference Equations, 2013
  • [38] A MONOTONICITY PROPERTY FOR GENERALIZED FIBONACCI SEQUENCES
    Mansour, Toufik
    Shattuck, Mark
    MATHEMATICA SLOVACA, 2017, 67 (03) : 585 - 592
  • [39] Generalized Fibonacci Sequences for Elliptic Curve Cryptography
    Cheddour, Zakariae
    Chillali, Abdelhakim
    Mouhib, Ali
    MATHEMATICS, 2023, 11 (22)
  • [40] SOME IDENTITIES FOR GENERALIZED FIBONACCI AND LUCAS SEQUENCES
    Irmak, Nurettin
    Alp, Murat
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2013, 42 (04): : 331 - 338