k-generalized Fibonacci number;
Leonardo number;
linear form in logarithms;
reduction method;
K-FIBONACCI;
D O I:
暂无
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
For an integer k > 2, let F (k) n be the k-generalized Fibonacci sequence that starts with 0, ... , 0,1,1 (k terms) and each term afterwards is the sum of k preceding terms. In this paper, we find all the k-generalized Fibonacci numbers that are Leonardo numbers. More explicitly, we solve the Diophantine equation F (k) n = Lem in positive integers n, k, m with k > 2.
机构:
Universidade Federal de Uberlândia, Av. João Naves de Ávila, 2121, Campus Santa Mônica 38408-100 Uberlândia, MG, BrazilUniversidade Federal de Uberlândia, Av. João Naves de Ávila, 2121, Campus Santa Mônica 38408-100 Uberlândia, MG, Brazil
Motta, Walter
Rachidi, Mustapha
论文数: 0引用数: 0
h-index: 0
机构:
D̀�epartement de Math´ematiques et Informatique, Universit´e Mohammed V, B.P. 1014, Rabat, MoroccoUniversidade Federal de Uberlândia, Av. João Naves de Ávila, 2121, Campus Santa Mônica 38408-100 Uberlândia, MG, Brazil
Rachidi, Mustapha
Saeki, Osamu
论文数: 0引用数: 0
h-index: 0
机构:
Kyushu University, Hakozaki, Fukuoka 812-8581, JapanUniversidade Federal de Uberlândia, Av. João Naves de Ávila, 2121, Campus Santa Mônica 38408-100 Uberlândia, MG, Brazil