Inspired by a pioneer work of Andersson and Kapitanski (Arch Ration Mech Anal 247(2):Paper No. 21, 76 pp, 2023), we prove the local well-posedness of the Cauchy problem of incompressible neo-Hookean equations if the initial deformation and velocity belong to Hn+22+(Rn)xHn2+(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>{\frac{n+2}{2}+}({\mathbb {R}}<^>n) \times H<^>{\frac{n}{2}+}({\mathbb {R}}<^>n)$$\end{document} (n=2,3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=2,3$$\end{document}), where n+22\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{n+2}{2}$$\end{document} and n2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{n}{2}$$\end{document} is respectively a scaling-invariant exponent for deformation and velocity in Sobolev spaces. Our new observation relies on two folds: a reduction to a second-order wave-elliptic system of deformation and velocity; and a "wave-map type" null form intrinsic in this coupled system. In particular, the wave nature with "wave-map type" null form allows us to prove a bilinear estimate of Klainerman-Machedon type for nonlinear terms. So we can lower 12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{2}$$\end{document}-order regularity in 3D and 34\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{3}{4}$$\end{document}-order regularity in 2D for well-posedness compared with Andersson and Kapitanski (Arch Ration Mech Anal 247(2):Paper No. 21, 76 pp, 2023).
机构:
Jiangxi Normal Univ, Coll Math & Informat Sci, Nanchang 330022, Jiangxi, Peoples R ChinaJiangxi Normal Univ, Coll Math & Informat Sci, Nanchang 330022, Jiangxi, Peoples R China
Chen, Dongxiang
Wang, Yuxi
论文数: 0引用数: 0
h-index: 0
机构:
Peking Univ, Sch Math Sci, Beijing 100871, Peoples R ChinaJiangxi Normal Univ, Coll Math & Informat Sci, Nanchang 330022, Jiangxi, Peoples R China
Wang, Yuxi
Zhang, Zhifei
论文数: 0引用数: 0
h-index: 0
机构:
Peking Univ, Sch Math Sci, Beijing 100871, Peoples R ChinaJiangxi Normal Univ, Coll Math & Informat Sci, Nanchang 330022, Jiangxi, Peoples R China
机构:
S China Univ Technol, Sch Math, Guangzhou 510640, Guangdong, Peoples R China
Auburn Univ, Dept Math, Auburn, AL 36849 USAS China Univ Technol, Sch Math, Guangzhou 510640, Guangdong, Peoples R China
Xu, Huan
Li, Yongsheng
论文数: 0引用数: 0
h-index: 0
机构:
S China Univ Technol, Sch Math, Guangzhou 510640, Guangdong, Peoples R ChinaS China Univ Technol, Sch Math, Guangzhou 510640, Guangdong, Peoples R China
Li, Yongsheng
Zhai, Xiaoping
论文数: 0引用数: 0
h-index: 0
机构:
S China Univ Technol, Sch Math, Guangzhou 510640, Guangdong, Peoples R ChinaS China Univ Technol, Sch Math, Guangzhou 510640, Guangdong, Peoples R China
机构:
Dipartimento di Matematica ed Informatica, Università di Ferrara, Via Machiavelli n. 35Dipartimento di Matematica ed Informatica, Università di Ferrara, Via Machiavelli n. 35
Ascanelli A.
Boiti C.
论文数: 0引用数: 0
h-index: 0
机构:
Dipartimento di Matematica ed Informatica, Università di Ferrara, Via Machiavelli n. 35Dipartimento di Matematica ed Informatica, Università di Ferrara, Via Machiavelli n. 35
Boiti C.
Zanghirati L.
论文数: 0引用数: 0
h-index: 0
机构:
Dipartimento di Matematica ed Informatica, Università di Ferrara, Via Machiavelli n. 35Dipartimento di Matematica ed Informatica, Università di Ferrara, Via Machiavelli n. 35