Well-posedness in Sobolev spaces for semi-linear 3-evolution equations

被引:0
|
作者
Ascanelli A. [1 ]
Boiti C. [1 ]
Zanghirati L. [1 ]
机构
[1] Dipartimento di Matematica ed Informatica, Università di Ferrara, Via Machiavelli n. 35
关键词
Non-linear evolution equations; Pseudo-differential operators; Well-posedness in Sobolev spaces;
D O I
10.1007/s11565-013-0191-y
中图分类号
学科分类号
摘要
We prove local in time well-posedness of the Cauchy problem in Sobolev spaces for semi-linear 3-evolution equations of the first order. We require real principal part, but complex valued coefficients for the lower order terms. Therefore decay conditions on the imaginary parts are needed, as x→∞. © 2013 Università degli Studi di Ferrara.
引用
收藏
页码:5 / 21
页数:16
相关论文
共 50 条
  • [1] Global well-posedness for semi-linear wave equations
    Kenig, CE
    Ponce, G
    Vega, L
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2000, 25 (9-10) : 1741 - 1752
  • [2] Gevrey well-posedness for 3-evolution equations with variable coefficients
    Arias Jr, Alexandre
    Ascanelli, Alessia
    Cappiello, Marco
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2024, 25 (01) : 1 - 31
  • [3] WELL-POSEDNESS RESULTS FOR FRACTIONAL SEMI-LINEAR WAVE EQUATIONS
    Djida, Jean-Daniel
    Fernandez, Arran
    Area, Ivan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2020, 25 (02): : 569 - 597
  • [4] Well-posedness results for a class of semi-linear super-diffusive equations
    Alvarez, Edgardo
    Gal, Ciprian G.
    Keyantuo, Valentin
    Warma, Mahamadi
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 181 : 24 - 61
  • [5] Well-posedness of linear singular evolution equations in Banach spaces: theoretical results
    M. C. Bortolan
    M. C. A. Brito
    F. Dantas
    Analysis Mathematica, 2025, 51 (1) : 99 - 128
  • [6] On Well-Posedness of the Cauchy Problem for Pseudohyperbolic Equations in Weighted Sobolev Spaces
    Bondar, L. N.
    Demidenko, G. V.
    SIBERIAN MATHEMATICAL JOURNAL, 2023, 64 (05) : 1076 - 1090
  • [7] Well-posedness in weighted Sobolev spaces for elliptic equations of Cordes type
    Caso, Loredana
    D'Ambrosio, Roberta
    Transirico, Maria
    COLLECTANEA MATHEMATICA, 2016, 67 (03) : 539 - 554
  • [8] On Well-Posedness of the Cauchy Problem for Pseudohyperbolic Equations in Weighted Sobolev Spaces
    L. N. Bondar
    G. V. Demidenko
    Siberian Mathematical Journal, 2023, 64 : 1076 - 1090
  • [9] Well-Posedness for the Navier-Stokes Equations with Datum in the Sobolev Spaces
    Khai D.Q.
    Acta Mathematica Vietnamica, 2017, 42 (3) : 431 - 443
  • [10] Well-posedness in weighted Sobolev spaces for elliptic equations of Cordes type
    Loredana Caso
    Roberta D’Ambrosio
    Maria Transirico
    Collectanea Mathematica, 2016, 67 : 539 - 554